Satellite-derived bathymetry using Sentinel-2 in mesotidal coasts

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL Coastal Engineering Pub Date : 2024-10-23 DOI:10.1016/j.coastaleng.2024.104644
S.P. Viaña-Borja , R. González-Villanueva , I. Alejo , R.P. Stumpf , G. Navarro , I. Caballero
{"title":"Satellite-derived bathymetry using Sentinel-2 in mesotidal coasts","authors":"S.P. Viaña-Borja ,&nbsp;R. González-Villanueva ,&nbsp;I. Alejo ,&nbsp;R.P. Stumpf ,&nbsp;G. Navarro ,&nbsp;I. Caballero","doi":"10.1016/j.coastaleng.2024.104644","DOIUrl":null,"url":null,"abstract":"<div><div>Coastal zones are strategic environments of high socioeconomic, political, and ecological value, with over half of the world's population residing within 200 km of the coast. This proximity highlights their vulnerability to extreme events, which are exacerbated by global changes, leading to significant coastal impacts such as erosion, flooding, and ecosystem services deterioration. Consequently, efficient and operational methodologies for continuous monitoring are urgently needed to face these challenges. Bathymetric data are essential for understanding coastal dynamics, yet traditional data collection methods are often constrained by logistical challenges and high costs. Spaceborne remote sensing techniques offer significant advantages over traditional ground-based methods, particularly in terms of cost-effectiveness and operational efficiency. Over the last half-century, different Satellite-derived bathymetry (SDB) methodologies have been developed; however, challenges still persist. In this research, we applied a robust SDB methodology to three different study sites: Cíes Islands, Baiona Bay, and Vao beach within the Ría de Vigo, Galicia (NW Spain). These areas offer diverse and complex mesotidal environments to test for the very first time the methodology's efficacy. SDB was retrieved with a median absolute error (MedAE) ranging from 0.35 m to 1.55 m for depths up to 14 m. Results with different data source were evaluated, obtaining MedAE for nautical charts ranging from 0.46 m to 1.55 m. The precision between the data sources were quite close. In addition, multi-image composite was generated using images coinciding with both low tide (LT) and high tide (HT) conditions across the three zones. The lowest MedAE values were consistently obtained in images classified as LT (0.46 m) corresponding to Vao area. The results highlight the potential of nautical charts as a reliable source of calibration data for SDB, confirm the effectiveness of multi-image and switching models to correct artifacts and turbidity, considering tidal effects, improving single image approaches, and leverage visible bands for precise depth retrieval under varying conditions.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"195 ","pages":"Article 104644"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001923","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Coastal zones are strategic environments of high socioeconomic, political, and ecological value, with over half of the world's population residing within 200 km of the coast. This proximity highlights their vulnerability to extreme events, which are exacerbated by global changes, leading to significant coastal impacts such as erosion, flooding, and ecosystem services deterioration. Consequently, efficient and operational methodologies for continuous monitoring are urgently needed to face these challenges. Bathymetric data are essential for understanding coastal dynamics, yet traditional data collection methods are often constrained by logistical challenges and high costs. Spaceborne remote sensing techniques offer significant advantages over traditional ground-based methods, particularly in terms of cost-effectiveness and operational efficiency. Over the last half-century, different Satellite-derived bathymetry (SDB) methodologies have been developed; however, challenges still persist. In this research, we applied a robust SDB methodology to three different study sites: Cíes Islands, Baiona Bay, and Vao beach within the Ría de Vigo, Galicia (NW Spain). These areas offer diverse and complex mesotidal environments to test for the very first time the methodology's efficacy. SDB was retrieved with a median absolute error (MedAE) ranging from 0.35 m to 1.55 m for depths up to 14 m. Results with different data source were evaluated, obtaining MedAE for nautical charts ranging from 0.46 m to 1.55 m. The precision between the data sources were quite close. In addition, multi-image composite was generated using images coinciding with both low tide (LT) and high tide (HT) conditions across the three zones. The lowest MedAE values were consistently obtained in images classified as LT (0.46 m) corresponding to Vao area. The results highlight the potential of nautical charts as a reliable source of calibration data for SDB, confirm the effectiveness of multi-image and switching models to correct artifacts and turbidity, considering tidal effects, improving single image approaches, and leverage visible bands for precise depth retrieval under varying conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用哨兵-2 号卫星在潮间带海岸进行卫星水深测量
沿海地区是具有高度社会经济、政治和生态价值的战略环境,全球一半以上的人口居住在距海岸 200 公里以内的地区。这种邻近性凸显了它们在极端事件面前的脆弱性,而全球变化又加剧了这种脆弱性,导致侵蚀、洪水和生态系统服务退化等重大沿海影响。因此,迫切需要高效、可操作的持续监测方法来应对这些挑战。水深数据对了解沿岸动态至关重要,但传统的数据收集方法往往受到后勤挑战和高成本的制约。与传统的地面方法相比,空间遥感技术具有明显的优势,特别是在成本效益和作业效率方面。在过去的半个世纪中,已经开发出了不同的卫星水深测量(SDB)方法,但挑战依然存在。在这项研究中,我们在三个不同的研究地点应用了强大的 SDB 方法:这三个不同的研究地点分别是:西班牙西北部加利西亚维哥河内的 Cíes 群岛、Baiona 海湾和 Vao 海滩。这些地区提供了多样而复杂的潮间带环境,首次检验了该方法的有效性。对不同数据源的结果进行了评估,海图的中位绝对误差(MedAE)为 0.46 米至 1.55 米。此外,利用三个区域的低潮(LT)和高潮(HT)条件下的图像生成了多图像合成。与瓦澳地区相对应的被归类为 LT(0.46 米)的图像的 MedAE 值一直最低。这些结果凸显了海图作为 SDB 校准数据可靠来源的潜力,证实了多图像和切换模型在校正伪影和浊度、考虑潮汐效应、改进单图像方法以及利用可见光波段在不同条件下进行精确深度检索方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
期刊最新文献
A probabilistic coral rubble mechanical instability model applied with field observations from the Great Barrier reef Numerical modelling of pump-driven tsunami generation and fluid-structure-interaction in idealized urbanized coastal areas during run-up Energy balance during Bragg wave resonance by submerged porous breakwaters through a mixture theory-based δ-LES-SPH model Experimental investigation on cross-shore profile evolution of reef-fronted beach Interactions between swell and colinear wind short crested waves, following and opposing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1