Positional diffusion: Graph-based diffusion models for set ordering

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-10-01 DOI:10.1016/j.patrec.2024.10.010
Francesco Giuliari , Gianluca Scarpellini , Stefano Fiorini , Stuart James , Pietro Morerio , Yiming Wang , Alessio Del Bue
{"title":"Positional diffusion: Graph-based diffusion models for set ordering","authors":"Francesco Giuliari ,&nbsp;Gianluca Scarpellini ,&nbsp;Stefano Fiorini ,&nbsp;Stuart James ,&nbsp;Pietro Morerio ,&nbsp;Yiming Wang ,&nbsp;Alessio Del Bue","doi":"10.1016/j.patrec.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>Positional reasoning is the process of ordering an unsorted set of parts into a consistent structure. To address this problem, we present <em>Positional Diffusion</em>, a plug-and-play graph formulation with Diffusion Probabilistic Models. Using a diffusion process, we add Gaussian noise to the set elements’ position and map them to a random position in a continuous space. <em>Positional Diffusion</em> learns to reverse the noising process and recover the original positions through an Attention-based Graph Neural Network. To evaluate our method, we conduct extensive experiments on three different tasks and seven datasets, comparing our approach against the state-of-the-art methods for visual puzzle-solving, sentence ordering, and room arrangement, demonstrating that our method outperforms long-lasting research on puzzle solving with up to <span><math><mrow><mo>+</mo><mn>17</mn><mtext>%</mtext></mrow></math></span> compared to the second-best deep learning method, and performs on par against the state-of-the-art methods on sentence ordering and room rearrangement. Our work highlights the suitability of diffusion models for ordering problems and proposes a novel formulation and method for solving various ordering tasks. We release our code at <span><span>https://github.com/IIT-PAVIS/Positional_Diffusion</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 272-278"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002988","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Positional reasoning is the process of ordering an unsorted set of parts into a consistent structure. To address this problem, we present Positional Diffusion, a plug-and-play graph formulation with Diffusion Probabilistic Models. Using a diffusion process, we add Gaussian noise to the set elements’ position and map them to a random position in a continuous space. Positional Diffusion learns to reverse the noising process and recover the original positions through an Attention-based Graph Neural Network. To evaluate our method, we conduct extensive experiments on three different tasks and seven datasets, comparing our approach against the state-of-the-art methods for visual puzzle-solving, sentence ordering, and room arrangement, demonstrating that our method outperforms long-lasting research on puzzle solving with up to +17% compared to the second-best deep learning method, and performs on par against the state-of-the-art methods on sentence ordering and room rearrangement. Our work highlights the suitability of diffusion models for ordering problems and proposes a novel formulation and method for solving various ordering tasks. We release our code at https://github.com/IIT-PAVIS/Positional_Diffusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
位置扩散:基于图的集合排序扩散模型
定位推理是将未排序的部件集合排序为一致结构的过程。为了解决这个问题,我们提出了位置扩散(Positional Diffusion),这是一种采用扩散概率模型的即插即用图表述方法。利用扩散过程,我们在集合元素的位置上添加高斯噪声,并将它们映射到连续空间中的随机位置。通过基于注意力的图神经网络,位置扩散学会逆转噪声过程并恢复原始位置。为了评估我们的方法,我们在三个不同的任务和七个数据集上进行了广泛的实验,将我们的方法与视觉解谜、句子排序和房间布置的最先进方法进行了比较,结果表明,我们的方法优于解谜方面的长期研究,与第二好的深度学习方法相比,我们的方法最多可提高 17%,与句子排序和房间重新布置的最先进方法相比,我们的方法表现也不相上下。我们的工作强调了扩散模型在排序问题上的适用性,并提出了解决各种排序任务的新公式和方法。我们在 https://github.com/IIT-PAVIS/Positional_Diffusion 上发布了我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Personalized Federated Learning on long-tailed data via knowledge distillation and generated features Adaptive feature alignment for adversarial training Discrete diffusion models with Refined Language-Image Pre-trained representations for remote sensing image captioning A unified framework to stereotyped behavior detection for screening Autism Spectrum Disorder Explainable hypergraphs for gait based Parkinson classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1