Qian Jin , Miao Feng , Yunfei Liu , Qi Liu , Siyuan Zhang , Dongwei Gui
{"title":"Asymmetric trends in sulfates, nitrates, and ammonium in PM2.5 of Chengdu: Insights from five years of hourly observations","authors":"Qian Jin , Miao Feng , Yunfei Liu , Qi Liu , Siyuan Zhang , Dongwei Gui","doi":"10.1016/j.uclim.2024.102190","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfate, nitrate, and ammonium (SNA) are critical components of PM<sub>2.5</sub>, posing significant health risks and playing a vital role in air pollution formation in megacities. Long-term monitoring and high-time resolution temporal data of these pollutants are essential for identifying potential sources as well as evaluating and planning control measures. This study analyzes a five-year real-time dataset of PM<sub>2.5</sub> and SNA in Chengdu, southwest China, with a focus on the effects of human activities, particularly during holidays, on air pollution. We examined annual and seasonal trends, weekend and holiday effects, meteorological influences, and regional sources of these pollutants using Generalized Additive Model, Conditional Probability Function, and Concentration Weighted Trajectory methods. The results indicate a 12.34 % reduction in PM<sub>2.5</sub> concentrations from 2017 to 2021, with limited improvement compared to other megacities. Holiday periods, such as Labor Day and Dragon Boat Festival, were associated with significant concentration spikes in PM<sub>2.5</sub>, sulfate, nitrate, and ammonium due to increased human activities and biomass burning. Dewpoint temperature was identified as the most significant meteorological factor influencing SNA formation with a nonlinear effect. These findings highlight the need for targeted pollution control measures during holiday periods to mitigate short-term pollution spikes.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"58 ","pages":"Article 102190"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095524003870","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfate, nitrate, and ammonium (SNA) are critical components of PM2.5, posing significant health risks and playing a vital role in air pollution formation in megacities. Long-term monitoring and high-time resolution temporal data of these pollutants are essential for identifying potential sources as well as evaluating and planning control measures. This study analyzes a five-year real-time dataset of PM2.5 and SNA in Chengdu, southwest China, with a focus on the effects of human activities, particularly during holidays, on air pollution. We examined annual and seasonal trends, weekend and holiday effects, meteorological influences, and regional sources of these pollutants using Generalized Additive Model, Conditional Probability Function, and Concentration Weighted Trajectory methods. The results indicate a 12.34 % reduction in PM2.5 concentrations from 2017 to 2021, with limited improvement compared to other megacities. Holiday periods, such as Labor Day and Dragon Boat Festival, were associated with significant concentration spikes in PM2.5, sulfate, nitrate, and ammonium due to increased human activities and biomass burning. Dewpoint temperature was identified as the most significant meteorological factor influencing SNA formation with a nonlinear effect. These findings highlight the need for targeted pollution control measures during holiday periods to mitigate short-term pollution spikes.
期刊介绍:
Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following:
Urban meteorology and climate[...]
Urban environmental pollution[...]
Adaptation to global change[...]
Urban economic and social issues[...]
Research Approaches[...]