{"title":"Effective street tree and grass designs to cool European neighbourhoods","authors":"Yehan Wu , Bardia Mashhoodi , Agnès Patuano","doi":"10.1016/j.uclim.2025.102376","DOIUrl":null,"url":null,"abstract":"<div><div>Street trees and grass are important elements for cooling cities, yet where and how to distribute them at the neighbourhood scale is still unclear. This study aims to identify effective street tree and grass design scenarios to maximise cooling in European neighbourhoods with temperate climate. 32 design scenarios were developed by combining urban design parameters of vegetation type, coverage, and spatial distribution in four neighbourhood typologies. The microclimate effects of these scenarios were then simulated using the ENVI-met model. To evaluate their cooling effects, three indices were applied: PET reduction, percentage change in thermal sensation class, and cooling efficiency. Results reveal that even fully covering streets with grass has a marginal thermal impact in reducing the mean Physiological Equivalent Temperature (PET) by up to 1.1 °C across the neighbourhood, while street trees lower PET by up to 8.7 °C. Neighbourhoods with wide radial streets have higher initial PET values and benefit more from green interventions. Strategically placing two rows of large trees on main streets is more effective for cooling than a single row on both main and secondary streets on the high-radiation side. Neighbourhood-specific practical recommendations for strategically implementing street trees and grass are provided to improve urban cooling.</div></div>","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"61 ","pages":"Article 102376"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212095525000926","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Street trees and grass are important elements for cooling cities, yet where and how to distribute them at the neighbourhood scale is still unclear. This study aims to identify effective street tree and grass design scenarios to maximise cooling in European neighbourhoods with temperate climate. 32 design scenarios were developed by combining urban design parameters of vegetation type, coverage, and spatial distribution in four neighbourhood typologies. The microclimate effects of these scenarios were then simulated using the ENVI-met model. To evaluate their cooling effects, three indices were applied: PET reduction, percentage change in thermal sensation class, and cooling efficiency. Results reveal that even fully covering streets with grass has a marginal thermal impact in reducing the mean Physiological Equivalent Temperature (PET) by up to 1.1 °C across the neighbourhood, while street trees lower PET by up to 8.7 °C. Neighbourhoods with wide radial streets have higher initial PET values and benefit more from green interventions. Strategically placing two rows of large trees on main streets is more effective for cooling than a single row on both main and secondary streets on the high-radiation side. Neighbourhood-specific practical recommendations for strategically implementing street trees and grass are provided to improve urban cooling.
期刊介绍:
Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following:
Urban meteorology and climate[...]
Urban environmental pollution[...]
Adaptation to global change[...]
Urban economic and social issues[...]
Research Approaches[...]