Hoyong Lee , Soojun Kim , Jaewon Kwak , Junhyeong Lee , Hung Soo Kim
{"title":"A study on classification of vegetation zones based on flow regimes in Riparian wetlands","authors":"Hoyong Lee , Soojun Kim , Jaewon Kwak , Junhyeong Lee , Hung Soo Kim","doi":"10.1016/j.ecoleng.2024.107429","DOIUrl":null,"url":null,"abstract":"<div><div>Wetlands play an important role in cycling water resources, organic matter, water purification, and ecosystem conservation. Understanding flow regimes is essential for effective wetland management because it significantly influences wetland succession and circulation. This study aims to develop a methodology for quantifying flow regimes of the Jangdan Wetland (Imjin River) and the Binae Wetland (Namhan River). The study utilized water level duration curve (LDC) based on historical water level data from 2008 to 2023 for the Binae Wetland and from 2003 to 2023 for the Jangdan Wetland to analyze hydrological flow regimes. Flow regime diagrams describing the inundation characteristics over time, were then constructed using the LDC and the digital elevation models (DEM) of the wetlands. To understand the relationship between vegetation communities and hydrologic regime in the wetland, this study classified nine vegetation zones based on the tolerance of associated plant species to inundation (in weeks or months) reported for plant species in previous studies. The study revealed that the Jangdan Wetland were dry primarily on most days but experienced complete inundation during flooding events. In contrast, the Binae Wetlands were found to be frequently inundated, with approximately 40 % of the area experiencing regular flooding, while 20 % of the higher elevation areas were only inundated once every few years.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857424002544","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Wetlands play an important role in cycling water resources, organic matter, water purification, and ecosystem conservation. Understanding flow regimes is essential for effective wetland management because it significantly influences wetland succession and circulation. This study aims to develop a methodology for quantifying flow regimes of the Jangdan Wetland (Imjin River) and the Binae Wetland (Namhan River). The study utilized water level duration curve (LDC) based on historical water level data from 2008 to 2023 for the Binae Wetland and from 2003 to 2023 for the Jangdan Wetland to analyze hydrological flow regimes. Flow regime diagrams describing the inundation characteristics over time, were then constructed using the LDC and the digital elevation models (DEM) of the wetlands. To understand the relationship between vegetation communities and hydrologic regime in the wetland, this study classified nine vegetation zones based on the tolerance of associated plant species to inundation (in weeks or months) reported for plant species in previous studies. The study revealed that the Jangdan Wetland were dry primarily on most days but experienced complete inundation during flooding events. In contrast, the Binae Wetlands were found to be frequently inundated, with approximately 40 % of the area experiencing regular flooding, while 20 % of the higher elevation areas were only inundated once every few years.
期刊介绍:
Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers.
Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.