Exploring public attention in the circular economy through topic modelling with twin hyperparameter optimisation

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-10-22 DOI:10.1016/j.egyai.2024.100433
Junhao Song , Yingfang Yuan , Kaiwen Chang , Bing Xu , Jin Xuan , Wei Pang
{"title":"Exploring public attention in the circular economy through topic modelling with twin hyperparameter optimisation","authors":"Junhao Song ,&nbsp;Yingfang Yuan ,&nbsp;Kaiwen Chang ,&nbsp;Bing Xu ,&nbsp;Jin Xuan ,&nbsp;Wei Pang","doi":"10.1016/j.egyai.2024.100433","DOIUrl":null,"url":null,"abstract":"<div><div>To advance the circular economy (CE), it is crucial to gain insights into the evolution of public attention, cognitive pathways related to circular products, and key public concerns. To achieve these objectives, we collected data from diverse platforms, including Twitter, Reddit, and The Guardian, and utilised three topic models to analyse the data. Given the performance of topic modelling may vary depending on hyperparameter settings, we proposed a novel framework that integrates twin (single- and multi-objective) hyperparameter optimisation for CE analysis. Systematic experiments were conducted to determine appropriate hyperparameters under different constraints, providing valuable insights into the correlations between CE and public attention. Our findings reveal that economic implications of sustainability and circular practices, particularly around recyclable materials and environmentally sustainable technologies, remain a significant public concern. Topics related to sustainable development and environmental protection technologies are particularly prominent on The Guardian, while Twitter discussions are comparatively sparse. These insights highlight the importance of targeted education programmes, business incentives adopt CE practices, and stringent waste management policies alongside improved recycling processes.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"18 ","pages":"Article 100433"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To advance the circular economy (CE), it is crucial to gain insights into the evolution of public attention, cognitive pathways related to circular products, and key public concerns. To achieve these objectives, we collected data from diverse platforms, including Twitter, Reddit, and The Guardian, and utilised three topic models to analyse the data. Given the performance of topic modelling may vary depending on hyperparameter settings, we proposed a novel framework that integrates twin (single- and multi-objective) hyperparameter optimisation for CE analysis. Systematic experiments were conducted to determine appropriate hyperparameters under different constraints, providing valuable insights into the correlations between CE and public attention. Our findings reveal that economic implications of sustainability and circular practices, particularly around recyclable materials and environmentally sustainable technologies, remain a significant public concern. Topics related to sustainable development and environmental protection technologies are particularly prominent on The Guardian, while Twitter discussions are comparatively sparse. These insights highlight the importance of targeted education programmes, business incentives adopt CE practices, and stringent waste management policies alongside improved recycling processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过双参数优化的主题建模探索循环经济中的公众关注度
为了推动循环经济(CE)的发展,深入了解公众注意力的演变、与循环产品相关的认知路径以及公众的主要关注点至关重要。为了实现这些目标,我们从 Twitter、Reddit 和《卫报》等不同平台收集数据,并利用三种话题模型对数据进行分析。鉴于话题模型的性能可能因超参数设置的不同而有所差异,我们提出了一个新颖的框架,将双(单目标和多目标)超参数优化整合到消费电子分析中。我们进行了系统性实验,以确定不同约束条件下的适当超参数,从而为了解行政首长协调会与公众关注度之间的相关性提供了有价值的见解。我们的研究结果表明,可持续发展和循环实践的经济影响,特别是围绕可回收材料和环境可持续技术的经济影响,仍然是公众关注的一个重要问题。与可持续发展和环保技术相关的话题在《卫报》上尤为突出,而推特上的讨论则相对稀少。这些见解凸显了有针对性的教育计划、商业激励措施、严格的废物管理政策以及改进的回收流程的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Predicting the thermal conductivity of polymer composites with one-dimensional oriented fillers using the combination of deep learning and ensemble learning A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction Integrating local knowledge with ChatGPT-like large-scale language models for enhanced societal comprehension of carbon neutrality Optimization of a Bayesian game for Peer-to-Peer trading among prosumers under incomplete information via a CNN-LSTM-ATT Parameter sensitivity analysis for diesel spray penetration prediction based on GA-BP neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1