{"title":"Low-temperature bubble formation in silica glass","authors":"E. M. Aaldenberg, K. T. Hufziger, M. Tomozawa","doi":"10.1111/jace.20130","DOIUrl":null,"url":null,"abstract":"<p>Phase separation was observed in silica glass following low-temperature heat treatment in high water vapor pressure through the formation of bubbles. Although the 6 day diffusion treatment in saturated water vapor pressure at 250°C does not normally cause phase separation, the reactive fracture surface and subsurface damage caused by polishing with cerium oxide (CeO<sub>2</sub>) allowed for an increase in water absorption during treatment and heterogeneous nucleation of the bubbles at damaged sites. The sub-surface damage, characteristic of blunt contact damage, was only revealed when the polished sample was etched. The formation of bubbles and polishing damage were observed in two silica glasses—one containing chlorine impurities and the other containing OH impurities. Raman spectra collected after fracture or polishing and water diffusion treatment demonstrated an increase in the abundance of –OH species including silanol (SiOH) groups and an evolution in the glass structure in the bubble regions compared with the bubble-free regions. These results indicate an increase in the reactivity between water and glass fracture surfaces relative to the bulk.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20130","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Phase separation was observed in silica glass following low-temperature heat treatment in high water vapor pressure through the formation of bubbles. Although the 6 day diffusion treatment in saturated water vapor pressure at 250°C does not normally cause phase separation, the reactive fracture surface and subsurface damage caused by polishing with cerium oxide (CeO2) allowed for an increase in water absorption during treatment and heterogeneous nucleation of the bubbles at damaged sites. The sub-surface damage, characteristic of blunt contact damage, was only revealed when the polished sample was etched. The formation of bubbles and polishing damage were observed in two silica glasses—one containing chlorine impurities and the other containing OH impurities. Raman spectra collected after fracture or polishing and water diffusion treatment demonstrated an increase in the abundance of –OH species including silanol (SiOH) groups and an evolution in the glass structure in the bubble regions compared with the bubble-free regions. These results indicate an increase in the reactivity between water and glass fracture surfaces relative to the bulk.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.