{"title":"Structural, electrical, leakage current, and magnetic characteristics of double perovskite Nd2NiTiO6","authors":"Sujan Malik, Abhigyan Dutta","doi":"10.1111/jace.20150","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the structural, electrical, leakage current, and magnetic characteristics of the double perovskite material Nd<sub>2</sub>NiTiO<sub>6</sub> synthesized through the sol–gel citrate auto-ignition method. The Rietveld refinement of the X-ray diffraction patterns confirmed a monoclinic symmetry (space group P2<sub>1</sub>/n) with an ordered arrangement of alternate NiO<sub>6</sub> and TiO<sub>6</sub> octahedra. Impedance spectroscopic analysis exhibited the material's non–Debye-type relaxation mechanism and semi-conductive nature. AC conduction analysis revealed that the conduction of charge carriers occurs via the nonoverlapping small polaron hopping mechanism, consistent with Mott's variable range hopping model. Temperature- and frequency-dependent dielectric measurements were interpreted using the Maxwell–Wagner interfacial polarization model. The analysis of thermal- and field-dependent leakage currents established that conduction is ohmic, which the Schottky barrier model explains. Studies on magnetization ruled out the presence of magnetic ordering connected to indirect interaction between Ni<sup>2+</sup> ions via Ti<sup>4+</sup> ions and the rare-earth cation (Nd<sup>3+</sup>) moment.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20150","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the structural, electrical, leakage current, and magnetic characteristics of the double perovskite material Nd2NiTiO6 synthesized through the sol–gel citrate auto-ignition method. The Rietveld refinement of the X-ray diffraction patterns confirmed a monoclinic symmetry (space group P21/n) with an ordered arrangement of alternate NiO6 and TiO6 octahedra. Impedance spectroscopic analysis exhibited the material's non–Debye-type relaxation mechanism and semi-conductive nature. AC conduction analysis revealed that the conduction of charge carriers occurs via the nonoverlapping small polaron hopping mechanism, consistent with Mott's variable range hopping model. Temperature- and frequency-dependent dielectric measurements were interpreted using the Maxwell–Wagner interfacial polarization model. The analysis of thermal- and field-dependent leakage currents established that conduction is ohmic, which the Schottky barrier model explains. Studies on magnetization ruled out the presence of magnetic ordering connected to indirect interaction between Ni2+ ions via Ti4+ ions and the rare-earth cation (Nd3+) moment.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.