Energetic and durable all-polymer aqueous battery for sustainable, flexible power.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-05 DOI:10.1038/s41467-024-53804-2
Yang Hong, Kangkang Jia, Yueyu Zhang, Ziyuan Li, Junlin Jia, Jing Chen, Qimin Liang, Huarui Sun, Qiang Gao, Dong Zhou, Ruhong Li, Xiaoli Dong, Xiulin Fan, Sisi He
{"title":"Energetic and durable all-polymer aqueous battery for sustainable, flexible power.","authors":"Yang Hong, Kangkang Jia, Yueyu Zhang, Ziyuan Li, Junlin Jia, Jing Chen, Qimin Liang, Huarui Sun, Qiang Gao, Dong Zhou, Ruhong Li, Xiaoli Dong, Xiulin Fan, Sisi He","doi":"10.1038/s41467-024-53804-2","DOIUrl":null,"url":null,"abstract":"<p><p>All-polymer aqueous batteries, featuring electrodes and electrolytes made entirely from polymers, advance wearable electronics through their processing ease, inherent safety, and sustainability. Challenges persist with the instability of polymer electrode redox products in aqueous environments, which fail to achieve high performance in all-polymer aqueous batteries. Here, we report a polymer-aqueous electrolyte designed to stabilize polymer electrode redox products by modulating the solvation layers and forming a solid-electrolyte interphase. Polyaniline is selected as an example for its dual functionality as a cathode or anode working by p/n doping mechanisms. This approach pioneers the application of polyaniline as an anode and enhances the high-voltage stability of polyaniline cathode in an aqueous electrolyte. The resulting all-polymer aqueous sodium-ion battery with polyaniline as symmetric electrodes exhibits a high capacity of 139 mAh/g, energy density of 153 Wh/kg, and a retention of over 92% after 4800 cycles. Spectroscopic characterizations have elucidated the hydration structure, solid-electrolyte interphase, and dual-ion doping mechanism. Large-scale all-polymer flexible batteries are fabricated with excellent flexibility and recyclability, heralding a paradigmatic approach to sustainable, wearable energy storage.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53804-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

All-polymer aqueous batteries, featuring electrodes and electrolytes made entirely from polymers, advance wearable electronics through their processing ease, inherent safety, and sustainability. Challenges persist with the instability of polymer electrode redox products in aqueous environments, which fail to achieve high performance in all-polymer aqueous batteries. Here, we report a polymer-aqueous electrolyte designed to stabilize polymer electrode redox products by modulating the solvation layers and forming a solid-electrolyte interphase. Polyaniline is selected as an example for its dual functionality as a cathode or anode working by p/n doping mechanisms. This approach pioneers the application of polyaniline as an anode and enhances the high-voltage stability of polyaniline cathode in an aqueous electrolyte. The resulting all-polymer aqueous sodium-ion battery with polyaniline as symmetric electrodes exhibits a high capacity of 139 mAh/g, energy density of 153 Wh/kg, and a retention of over 92% after 4800 cycles. Spectroscopic characterizations have elucidated the hydration structure, solid-electrolyte interphase, and dual-ion doping mechanism. Large-scale all-polymer flexible batteries are fabricated with excellent flexibility and recyclability, heralding a paradigmatic approach to sustainable, wearable energy storage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能量充沛、经久耐用的全聚合物水溶液电池可提供可持续的灵活电力。
全聚合物水电池的电极和电解质完全由聚合物制成,其加工简便、固有的安全性和可持续性推动了可穿戴电子设备的发展。聚合物电极氧化还原产物在水环境中的不稳定性一直是个难题,导致全聚合物水电池无法实现高性能。在此,我们报告了一种聚合物水性电解质,旨在通过调节溶解层和形成固体-电解质间相来稳定聚合物电极氧化还原产物。选择聚苯胺为例,是因为它具有阴极或阳极的双重功能,可通过 p/n 掺杂机制发挥作用。这种方法开创了将聚苯胺用作阳极的先河,并增强了聚苯胺阴极在水性电解质中的高压稳定性。以聚苯胺为对称电极的全聚合物钠离子水溶液电池的容量高达 139 mAh/g,能量密度为 153 Wh/kg,循环 4800 次后的保持率超过 92%。光谱表征阐明了水合结构、固体电解质间相和双离子掺杂机制。大规模全聚合物柔性电池的制造具有极佳的柔韧性和可回收性,预示着一种可持续、可穿戴式能源存储的典范方法的诞生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Energetic and durable all-polymer aqueous battery for sustainable, flexible power. Atomically precise copper clusters with dual sites for highly chemoselective and efficient hydroboration Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures Fast and light-efficient remote focusing for volumetric voltage imaging The gut microbiome is associated with susceptibility to febrile malaria in Malian children
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1