Fast and light-efficient remote focusing for volumetric voltage imaging

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-05 DOI:10.1038/s41467-024-53685-5
Urs L. Böhm, Benjamin Judkewitz
{"title":"Fast and light-efficient remote focusing for volumetric voltage imaging","authors":"Urs L. Böhm, Benjamin Judkewitz","doi":"10.1038/s41467-024-53685-5","DOIUrl":null,"url":null,"abstract":"<p>Voltage imaging holds great potential for biomedical research by enabling noninvasive recording of the electrical activity of excitable cells such as neurons or cardiomyocytes. Camera-based detection can record from hundreds of cells in parallel, but imaging entire volumes is limited by the need to focus through the sample at high speeds. Remote focusing techniques can remedy this drawback, but have so far been either too slow or light-inefficient. Here, we introduce flipped image remote focusing, a remote focusing method that doubles the light efficiency compared to conventional beamsplitter-based techniques and enables high-speed volumetric voltage imaging at 500 volumes/s. We show the potential of our approach by combining it with light sheet imaging in the zebrafish spinal cord to record from &gt;100 spontaneously active neurons in parallel.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53685-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Voltage imaging holds great potential for biomedical research by enabling noninvasive recording of the electrical activity of excitable cells such as neurons or cardiomyocytes. Camera-based detection can record from hundreds of cells in parallel, but imaging entire volumes is limited by the need to focus through the sample at high speeds. Remote focusing techniques can remedy this drawback, but have so far been either too slow or light-inefficient. Here, we introduce flipped image remote focusing, a remote focusing method that doubles the light efficiency compared to conventional beamsplitter-based techniques and enables high-speed volumetric voltage imaging at 500 volumes/s. We show the potential of our approach by combining it with light sheet imaging in the zebrafish spinal cord to record from >100 spontaneously active neurons in parallel.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于容积电压成像的快速、高光效远程聚焦技术
电压成像技术可以无创记录神经元或心肌细胞等可兴奋细胞的电活动,在生物医学研究中具有巨大潜力。基于相机的检测可同时记录数百个细胞,但由于需要高速聚焦样品,因此整个体积的成像受到限制。远程聚焦技术可以弥补这一缺陷,但迄今为止要么速度太慢,要么光效太低。在这里,我们引入了翻转图像远程聚焦技术,这种远程聚焦方法与传统的基于分光镜的技术相比,光效提高了一倍,并能以 500 体积/秒的速度进行高速体积电压成像。我们将这种方法与斑马鱼脊髓的光片成像相结合,并行记录了 100 个自发活动的神经元,从而展示了这种方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Energetic and durable all-polymer aqueous battery for sustainable, flexible power. Atomically precise copper clusters with dual sites for highly chemoselective and efficient hydroboration Room-temperature selective cyclodehydrogenation on Au(111) via radical addition of open-shell resonance structures Fast and light-efficient remote focusing for volumetric voltage imaging The gut microbiome is associated with susceptibility to febrile malaria in Malian children
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1