Begomoviruses associated with okra yellow vein mosaic disease (OYVMD): diversity, transmission mechanism, and management strategies.

IF 10.6 Q1 HORTICULTURE Molecular Horticulture Pub Date : 2024-11-05 DOI:10.1186/s43897-024-00112-4
Thomas Wilbur Davis, Andrew Nasa Thompson
{"title":"Begomoviruses associated with okra yellow vein mosaic disease (OYVMD): diversity, transmission mechanism, and management strategies.","authors":"Thomas Wilbur Davis, Andrew Nasa Thompson","doi":"10.1186/s43897-024-00112-4","DOIUrl":null,"url":null,"abstract":"<p><p>Okra yellow vein mosaic disease (OYVMD) is a major constraint to okra production globally. It is caused by several distinct begomoviruses, including okra yellow vein mosaic virus (OYVMV), that are transmitted by the whitefly. This study synthesizes current knowledge on the complex interactions between whiteflies, begomoviruses, and okra plants that enable viral spread and cause OYVMD. The acquisition and transmission cycle involves specific processes including virion ingestion during phloem-feeding, endocytosis and passage across insect tissues, secretion in saliva, and inoculation into plants. Molecular compatibilities between vector coat proteins, midgut proteins, and plant factors modulate virus replication and movement through barrier tissues. Abiotic stresses and host traits also impact whitefly behavior and virus epidemiology. Begomoviruses such as OYVMV have spread globally wherever whitefly vectors and susceptible okra varieties occur. Integrated management of the tripartite pathosystem that incorporates host resistance, cultural tactics, and biological control is required to mitigate the transmission of begomoviruses and OYVMD impact. Finally, resolving vector-virus interactions and developing interference strategies will help contribute to strengthening okra germplasm resistance which can support sustainable food production.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-024-00112-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Okra yellow vein mosaic disease (OYVMD) is a major constraint to okra production globally. It is caused by several distinct begomoviruses, including okra yellow vein mosaic virus (OYVMV), that are transmitted by the whitefly. This study synthesizes current knowledge on the complex interactions between whiteflies, begomoviruses, and okra plants that enable viral spread and cause OYVMD. The acquisition and transmission cycle involves specific processes including virion ingestion during phloem-feeding, endocytosis and passage across insect tissues, secretion in saliva, and inoculation into plants. Molecular compatibilities between vector coat proteins, midgut proteins, and plant factors modulate virus replication and movement through barrier tissues. Abiotic stresses and host traits also impact whitefly behavior and virus epidemiology. Begomoviruses such as OYVMV have spread globally wherever whitefly vectors and susceptible okra varieties occur. Integrated management of the tripartite pathosystem that incorporates host resistance, cultural tactics, and biological control is required to mitigate the transmission of begomoviruses and OYVMD impact. Finally, resolving vector-virus interactions and developing interference strategies will help contribute to strengthening okra germplasm resistance which can support sustainable food production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与黄秋葵黄脉花叶病(OYVMD)相关的蚕豆病毒:多样性、传播机制和管理策略。
黄秋葵黄脉花叶病(OYVMD)是全球黄秋葵生产的主要制约因素。它是由几种不同的乞巧病毒引起的,包括黄秋葵黄脉花叶病毒(OYVMV),由粉虱传播。本研究综述了目前关于粉虱、乞蛾病毒和黄秋葵植物之间复杂的相互作用的知识,这些相互作用促成了病毒的传播并引发了 OYVMD。病毒的获取和传播周期涉及特定过程,包括在韧皮部取食过程中摄取病毒、内吞和穿过昆虫组织、分泌唾液以及接种到植物中。载体衣壳蛋白、中肠蛋白和植物因子之间的分子兼容性调节病毒的复制和在屏障组织中的移动。非生物胁迫和寄主特性也会影响粉虱的行为和病毒的流行。只要有粉虱媒介和易感黄秋葵品种出现,OYVMV 等乞蛾病毒就会在全球范围内传播。需要对三方病理系统进行综合管理,将寄主抗性、文化策略和生物防治结合起来,以减轻乞猴病毒的传播和 OYVMD 的影响。最后,解决病媒与病毒之间的相互作用并制定干扰策略将有助于增强秋葵种质的抗性,从而支持可持续的粮食生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Horticulture
Molecular Horticulture horticultural research-
CiteScore
8.00
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊介绍: Aims Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field. Scope Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants): ▪ Developmental and evolutionary biology ▪ Physiology, biochemistry and cell biology ▪ Plant-microbe and plant-environment interactions ▪ Genetics and epigenetics ▪ Molecular breeding and biotechnology ▪ Secondary metabolism and synthetic biology ▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome. The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest. In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.
期刊最新文献
Begomoviruses associated with okra yellow vein mosaic disease (OYVMD): diversity, transmission mechanism, and management strategies. VvD14c-VvMAX2-VvLOB/VvLBD19 module is involved in the strigolactone-mediated regulation of grapevine root architecture. Ovule initiation in crops characterized by multi-ovulate ovaries. CyDotian: a versatile toolkit for identification of intragenic repeat sequences. Functions of membrane proteins in regulating fruit ripening and stress responses of horticultural crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1