A Multimodal Deep Learning Nomogram for the Identification of Clinically Significant Prostate Cancer in Patients with Gray-Zone PSA Levels: Comparison with Clinical and Radiomics Models
{"title":"A Multimodal Deep Learning Nomogram for the Identification of Clinically Significant Prostate Cancer in Patients with Gray-Zone PSA Levels: Comparison with Clinical and Radiomics Models","authors":"Tong Chen , Wei Hu , Yueyue Zhang , Chaogang Wei , Wenlu Zhao , Xiaohong Shen , Caiyuan Zhang , Junkang Shen","doi":"10.1016/j.acra.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Rationale and Objectives</h3><div>To establish a multimodal deep learning nomogram for predicting clinically significant prostate cancer in patients with gray-zone PSA levels.</div></div><div><h3>Methods</h3><div>This retrospective study enrolled 303 patients with pathological results between January 2018 and December 2022. Clinical variables and the PI-RADS v2.1 score were used to construct a clinical model. Radiomics and deep learning features from bp-MRI were used to develop a radiomics model with SVM and a deep learning model, respectively. A hybrid fusion approach was used to integrate the multimodal data and construct combined models (Comb.Rad.model and Comb.DL.model). The robustness of the radiomics model with XGBoost was validated and compared. Model efficacy was assessed through ROC curve and decision curve analysis. A nomogram was developed based on the best-performing model.</div></div><div><h3>Results</h3><div>The clinical model had AUCs of 0.845 and 0.779 in the training and testing set. The radiomics model with SVM and the deep learning model achieved AUCs of 0.825 and 0.933 in the training set and 0.811 and 0.907 in the testing set, respectively. The diagnostic performance of the combined models was significantly improved, with Comb.DL.model having a higher AUC than Comb.Rad.model in both the training (0.986 vs. 0.924, P = 0.008) and testing (0.965 vs. 0.859, P = 0.005) set. The diagnostic efficiency of both the radiomics model and Comb.Rad.model with XGBoost were comparable to that of SVM, confirming the robustness of the established model.</div></div><div><h3>Conclusion</h3><div>The integrated nomogram combining deep learning features, PI-RADS score, and clinical variables significantly outperformed the traditional radiomics and clinical models.</div></div>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":"32 2","pages":"Pages 864-876"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1076633224007700","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and Objectives
To establish a multimodal deep learning nomogram for predicting clinically significant prostate cancer in patients with gray-zone PSA levels.
Methods
This retrospective study enrolled 303 patients with pathological results between January 2018 and December 2022. Clinical variables and the PI-RADS v2.1 score were used to construct a clinical model. Radiomics and deep learning features from bp-MRI were used to develop a radiomics model with SVM and a deep learning model, respectively. A hybrid fusion approach was used to integrate the multimodal data and construct combined models (Comb.Rad.model and Comb.DL.model). The robustness of the radiomics model with XGBoost was validated and compared. Model efficacy was assessed through ROC curve and decision curve analysis. A nomogram was developed based on the best-performing model.
Results
The clinical model had AUCs of 0.845 and 0.779 in the training and testing set. The radiomics model with SVM and the deep learning model achieved AUCs of 0.825 and 0.933 in the training set and 0.811 and 0.907 in the testing set, respectively. The diagnostic performance of the combined models was significantly improved, with Comb.DL.model having a higher AUC than Comb.Rad.model in both the training (0.986 vs. 0.924, P = 0.008) and testing (0.965 vs. 0.859, P = 0.005) set. The diagnostic efficiency of both the radiomics model and Comb.Rad.model with XGBoost were comparable to that of SVM, confirming the robustness of the established model.
Conclusion
The integrated nomogram combining deep learning features, PI-RADS score, and clinical variables significantly outperformed the traditional radiomics and clinical models.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.