Multi-Dimensional Visual Data Restoration: Uncovering the Global Discrepancy in Transformed High-Order Tensor Singular Values.

Chengxun He, Yang Xu, Zebin Wu, Shangdong Zheng, Zhihui Wei
{"title":"Multi-Dimensional Visual Data Restoration: Uncovering the Global Discrepancy in Transformed High-Order Tensor Singular Values.","authors":"Chengxun He, Yang Xu, Zebin Wu, Shangdong Zheng, Zhihui Wei","doi":"10.1109/TIP.2024.3475738","DOIUrl":null,"url":null,"abstract":"<p><p>The recently proposed high-order tensor algebraic framework generalizes the tensor singular value decomposition (t-SVD) induced by the invertible linear transform from order-3 to order-d (d > 3). However, the derived order-d t-SVD rank essentially ignores the implicit global discrepancy in the quantity distribution of non-zero transformed high-order singular values across the higher modes of tensors. This oversight leads to sub-optimal restoration in processing real-world multi-dimensional visual datasets. To address this challenge, in this study, we look in-depth at the intrinsic properties of practical visual data tensors, and put our efforts into faithfully measuring their high-order low-rank nature. Technically, we first present a novel order-d tensor rank definition. This rank function effectively captures the aforementioned discrepancy property observed in real visual data tensors and is thus called the discrepant t-SVD rank. Subsequently, we introduce a nonconvex regularizer to facilitate the construction of the corresponding discrepant t-SVD rank minimization regime. The results show that the investigated low-rank approximation has the closed-form solution and avoids dilemmas caused by the previous convex optimization approach. Based on this new regime, we meticulously develop two models for typical restoration tasks: high-order tensor completion and high-order tensor robust principal component analysis. Numerical examples on order-4 hyperspectral videos, order-4 color videos, and order-5 light field images substantiate that our methods outperform state-of-the-art tensor-represented competitors. Finally, taking a fundamental order-3 hyperspectral tensor restoration task as an example, we further demonstrate the effectiveness of our new rank minimization regime for more practical applications. The source codes of the proposed methods are available at https://github.com/CX-He/DTSVD.git.</p>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIP.2024.3475738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The recently proposed high-order tensor algebraic framework generalizes the tensor singular value decomposition (t-SVD) induced by the invertible linear transform from order-3 to order-d (d > 3). However, the derived order-d t-SVD rank essentially ignores the implicit global discrepancy in the quantity distribution of non-zero transformed high-order singular values across the higher modes of tensors. This oversight leads to sub-optimal restoration in processing real-world multi-dimensional visual datasets. To address this challenge, in this study, we look in-depth at the intrinsic properties of practical visual data tensors, and put our efforts into faithfully measuring their high-order low-rank nature. Technically, we first present a novel order-d tensor rank definition. This rank function effectively captures the aforementioned discrepancy property observed in real visual data tensors and is thus called the discrepant t-SVD rank. Subsequently, we introduce a nonconvex regularizer to facilitate the construction of the corresponding discrepant t-SVD rank minimization regime. The results show that the investigated low-rank approximation has the closed-form solution and avoids dilemmas caused by the previous convex optimization approach. Based on this new regime, we meticulously develop two models for typical restoration tasks: high-order tensor completion and high-order tensor robust principal component analysis. Numerical examples on order-4 hyperspectral videos, order-4 color videos, and order-5 light field images substantiate that our methods outperform state-of-the-art tensor-represented competitors. Finally, taking a fundamental order-3 hyperspectral tensor restoration task as an example, we further demonstrate the effectiveness of our new rank minimization regime for more practical applications. The source codes of the proposed methods are available at https://github.com/CX-He/DTSVD.git.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多维视觉数据修复:揭示变换后高阶张量奇异值的全局差异。
最近提出的高阶张量代数框架将可逆线性变换引起的张量奇异值分解(t-SVD)从阶-3 推广到了阶-d(d > 3)。然而,推导出的 d 阶 t-SVD 秩基本上忽略了张量高阶模中非零变换高阶奇异值数量分布的隐含全局差异。这一疏忽导致在处理真实世界的多维视觉数据集时出现次优还原。为了应对这一挑战,在本研究中,我们深入研究了实用视觉数据张量的内在属性,并致力于忠实测量其高阶低阶性质。在技术上,我们首先提出了一种新颖的阶d张量秩定义。这个秩函数有效地捕捉了上述在实际视觉数据张量中观察到的差异特性,因此被称为差异 t-SVD 秩。随后,我们引入了一个非凸正则器,以方便构建相应的差异 t-SVD 秩最小化机制。结果表明,所研究的低秩近似方法具有闭式解,避免了以往凸优化方法造成的困境。基于这一新机制,我们为典型的复原任务精心开发了两个模型:高阶张量补全和高阶张量鲁棒主成分分析。4 阶高光谱视频、4 阶彩色视频和 5 阶光场图像的实例证明,我们的方法优于最先进的张量表示竞争者。最后,我们以一个基本的 3 阶高光谱张量复原任务为例,进一步证明了我们新的秩最小化机制在更多实际应用中的有效性。建议方法的源代码可在 https://github.com/CX-He/DTSVD.git 网站上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Dimensional Visual Data Restoration: Uncovering the Global Discrepancy in Transformed High-Order Tensor Singular Values. Learning Cross-Attention Point Transformer with Global Porous Sampling. Salient Object Detection From Arbitrary Modalities. GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning. AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1