Debanjana Maji, Jermaine L. Jenkins, Paul L. Boutz and Clara L. Kielkopf*,
{"title":"Recurrent Neurodevelopmentally Associated Variants of the Pre-mRNA Splicing Factor U2AF2 Alter RNA Binding Affinities and Interactions","authors":"Debanjana Maji, Jermaine L. Jenkins, Paul L. Boutz and Clara L. Kielkopf*, ","doi":"10.1021/acs.biochem.4c0034410.1021/acs.biochem.4c00344","DOIUrl":null,"url":null,"abstract":"<p ><i>De novo</i> mutations affecting the pre-mRNA splicing factor U2AF2 are associated with developmental delays and intellectual disabilities, yet the molecular basis is unknown. Here, we demonstrated by fluorescence anisotropy RNA binding assays that recurrent missense mutants (Arg149Trp, Arg150His, or Arg150Cys) decreased the binding affinity of U2AF2 for a consensus splice site RNA. Crystal structures at 1.4 Å resolutions showed that Arg149Trp or Arg150His disrupted hydrogen bonds between U2AF2 and the terminal nucleotides of the RNA site. Reanalysis of publicly available RNaseq data confirmed that U2AF2 depletion altered splicing of transcripts encoding RNA binding proteins (RBPs). These results confirmed that the impaired RNA interactions of Arg149Trp and Arg150His U2AF2 variants could contribute to dysregulating an RBP-governed neurodevelopmental program of alternative splicing.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.biochem.4c00344","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00344","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
De novo mutations affecting the pre-mRNA splicing factor U2AF2 are associated with developmental delays and intellectual disabilities, yet the molecular basis is unknown. Here, we demonstrated by fluorescence anisotropy RNA binding assays that recurrent missense mutants (Arg149Trp, Arg150His, or Arg150Cys) decreased the binding affinity of U2AF2 for a consensus splice site RNA. Crystal structures at 1.4 Å resolutions showed that Arg149Trp or Arg150His disrupted hydrogen bonds between U2AF2 and the terminal nucleotides of the RNA site. Reanalysis of publicly available RNaseq data confirmed that U2AF2 depletion altered splicing of transcripts encoding RNA binding proteins (RBPs). These results confirmed that the impaired RNA interactions of Arg149Trp and Arg150His U2AF2 variants could contribute to dysregulating an RBP-governed neurodevelopmental program of alternative splicing.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.