High-Throughput Algorithmic Optimization of In Vitro Transcription for SARS-CoV-2 mRNA Vaccine Production

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-10-20 DOI:10.1021/acs.biochem.4c0018810.1021/acs.biochem.4c00188
Spencer E. McMinn*, Danielle V. Miller*, Daniel Yur, Kevin Stone, Yuting Xu, Ajit Vikram, Shashank Murali, Jessica Raffaele, David Holland, Sheng-Ching Wang and Joseph P. Smith, 
{"title":"High-Throughput Algorithmic Optimization of In Vitro Transcription for SARS-CoV-2 mRNA Vaccine Production","authors":"Spencer E. McMinn*,&nbsp;Danielle V. Miller*,&nbsp;Daniel Yur,&nbsp;Kevin Stone,&nbsp;Yuting Xu,&nbsp;Ajit Vikram,&nbsp;Shashank Murali,&nbsp;Jessica Raffaele,&nbsp;David Holland,&nbsp;Sheng-Ching Wang and Joseph P. Smith,&nbsp;","doi":"10.1021/acs.biochem.4c0018810.1021/acs.biochem.4c00188","DOIUrl":null,"url":null,"abstract":"<p >The <i>in vitro</i> transcription (IVT) of messenger ribonucleic acid (mRNA) from the linearized deoxyribonucleic acid (DNA) template of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) was optimized for total mRNA yield and purity (by percent intact mRNA) utilizing machine learning in conjunction with automated, high-throughput liquid handling technology. An iterative Bayesian optimization approach successfully optimized 11 critical process parameters in 42 reactions across 5 experimental rounds. Once the optimized conditions were achieved, an automated, high-throughput screen was conducted to evaluate commercially available T7 RNA polymerases for rate and quality of mRNA production. Final conditions showed a 12% yield improvement and a 50% reduction in reaction time, while simultaneously significantly decreasing (up to 44% reduction) the use of expensive reagents. This novel platform offers a powerful new approach for optimizing IVT reactions for mRNA production.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00188","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The in vitro transcription (IVT) of messenger ribonucleic acid (mRNA) from the linearized deoxyribonucleic acid (DNA) template of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) was optimized for total mRNA yield and purity (by percent intact mRNA) utilizing machine learning in conjunction with automated, high-throughput liquid handling technology. An iterative Bayesian optimization approach successfully optimized 11 critical process parameters in 42 reactions across 5 experimental rounds. Once the optimized conditions were achieved, an automated, high-throughput screen was conducted to evaluate commercially available T7 RNA polymerases for rate and quality of mRNA production. Final conditions showed a 12% yield improvement and a 50% reduction in reaction time, while simultaneously significantly decreasing (up to 44% reduction) the use of expensive reagents. This novel platform offers a powerful new approach for optimizing IVT reactions for mRNA production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 SARS-CoV-2 mRNA 疫苗生产的体外转录高通量算法优化
利用机器学习结合自动化、高通量液体处理技术,对从严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)Delta 变体(B.1.617.2)线性化脱氧核糖核酸(DNA)模板转录信使核糖核酸(mRNA)的体外转录(IVT)进行了优化,以提高 mRNA 总产量和纯度(按完整 mRNA 百分比计算)。迭代贝叶斯优化方法在 5 轮实验的 42 个反应中成功优化了 11 个关键工艺参数。达到优化条件后,进行了自动高通量筛选,以评估市售 T7 RNA 聚合酶的 mRNA 生产率和质量。最终条件显示,产量提高了 12%,反应时间缩短了 50%,同时大幅减少了昂贵试剂的使用(最多减少 44%)。这种新型平台为优化 mRNA 生产的 IVT 反应提供了一种强大的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Probing Aromatic Side Chains Reveals the Site-Specific Melting in the SUMO1 Molten Globule. A GSDMD agonist boosts specific antitumor immunity Glymphatic dysfunction in PD clinical progression Dementia risk scores in diverse populations High prevalence of hepatitis B in NMOSD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1