{"title":"Characterization of the Flavin-Dependent Monooxygenase Involved in the Biosynthesis of the Nocardiosis-Associated Polyketide†","authors":"Antonio Del Rio Flores, and , Chaitan Khosla*, ","doi":"10.1021/acs.biochem.4c0048010.1021/acs.biochem.4c00480","DOIUrl":null,"url":null,"abstract":"<p >Some species of the <i>Nocardia</i> genus harbor a highly conserved biosynthetic gene cluster designated as the NOCardiosis-Associated Polyketide (NOCAP) synthase that produces a unique glycolipid natural product. The NOCAP glycolipid is composed of a fully substituted benzaldehyde headgroup linked to a polyfunctional alkyl tail and an <i>O</i>-linked disaccharide composed of 3-α-epimycarose and 2-<i>O</i>-methyl-α-rhamnose. Incorporation of the disaccharide unit is preceded by a critical step involving hydroxylation by NocapM, a flavin monooxygenase. In this study, we employed biochemical, spectroscopic, and kinetic analyses to explore the substrate scope of NocapM. Our findings indicate that NocapM catalyzes hydroxylation of diverse aromatic substrates, although the observed coupling between NADPH oxidation and substrate hydroxylation varies widely from substrate to substrate. Our in-depth biochemical characterization of NocapM provides a solid foundation for future mechanistic studies of this enzyme as well as its utilization as a practical biocatalyst.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00480","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Some species of the Nocardia genus harbor a highly conserved biosynthetic gene cluster designated as the NOCardiosis-Associated Polyketide (NOCAP) synthase that produces a unique glycolipid natural product. The NOCAP glycolipid is composed of a fully substituted benzaldehyde headgroup linked to a polyfunctional alkyl tail and an O-linked disaccharide composed of 3-α-epimycarose and 2-O-methyl-α-rhamnose. Incorporation of the disaccharide unit is preceded by a critical step involving hydroxylation by NocapM, a flavin monooxygenase. In this study, we employed biochemical, spectroscopic, and kinetic analyses to explore the substrate scope of NocapM. Our findings indicate that NocapM catalyzes hydroxylation of diverse aromatic substrates, although the observed coupling between NADPH oxidation and substrate hydroxylation varies widely from substrate to substrate. Our in-depth biochemical characterization of NocapM provides a solid foundation for future mechanistic studies of this enzyme as well as its utilization as a practical biocatalyst.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.