An ensembled multilabel classification method for the short-circuit detection of electrolytic refining

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2024-10-01 DOI:10.1016/j.aei.2024.102919
{"title":"An ensembled multilabel classification method for the short-circuit detection of electrolytic refining","authors":"","doi":"10.1016/j.aei.2024.102919","DOIUrl":null,"url":null,"abstract":"<div><div>Short-circuits occurring in the electrolytic refining process of non-ferrous smelting are a main factor that consumes extra energy and affects the metal quality. This paper proposes an ensembled multilabel classification method for short-circuit detection based on infrared images and makes up for the defect of previous methods using object-detection neural networks being hard to directly apply in industrial sites. Different from the object-detection methods, the multilabel classification method does not output the imaging positions but directly obtains the realistic positions, i.e. plate numbers, of the faulty plates. By introducing a new convolutional neural network named FlatNet, no extra work is required to get the realistic positions of the faulty plates. To address the data imbalance inherent to multilabel classification, dynamic weights that pay more attention both to the minority class and difficult samples are presented, forming a bilateral constraint on the missed and the false detections. At the end of the method, we design a greedy ensemble approach driven by validation F1-scores for the promotion of detection performance and stability. Experiments conducted with real-world data verify the effectiveness of the proposed fault detection method.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005706","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Short-circuits occurring in the electrolytic refining process of non-ferrous smelting are a main factor that consumes extra energy and affects the metal quality. This paper proposes an ensembled multilabel classification method for short-circuit detection based on infrared images and makes up for the defect of previous methods using object-detection neural networks being hard to directly apply in industrial sites. Different from the object-detection methods, the multilabel classification method does not output the imaging positions but directly obtains the realistic positions, i.e. plate numbers, of the faulty plates. By introducing a new convolutional neural network named FlatNet, no extra work is required to get the realistic positions of the faulty plates. To address the data imbalance inherent to multilabel classification, dynamic weights that pay more attention both to the minority class and difficult samples are presented, forming a bilateral constraint on the missed and the false detections. At the end of the method, we design a greedy ensemble approach driven by validation F1-scores for the promotion of detection performance and stability. Experiments conducted with real-world data verify the effectiveness of the proposed fault detection method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电解精炼短路检测的集合多标签分类法
有色金属冶炼的电解精炼过程中发生的短路是消耗额外能源和影响金属质量的主要因素。本文提出了一种基于红外图像的短路检测集合多标签分类方法,弥补了以往使用对象检测神经网络的方法难以直接应用于工业现场的缺陷。与物体检测方法不同的是,多标签分类方法不输出成像位置,而是直接获取故障车牌的实际位置,即车牌号码。通过引入名为 FlatNet 的新卷积神经网络,无需额外工作即可获得故障车牌的实际位置。为了解决多标签分类中固有的数据不平衡问题,我们提出了同时关注少数类和困难样本的动态权重,从而对漏检和误检形成了双边约束。在方法的最后,我们设计了一种由验证 F1 分数驱动的贪婪集合方法,以提高检测性能和稳定性。利用真实世界数据进行的实验验证了所提出的故障检测方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
A method for constructing an ergonomics evaluation indicator system for community aging services based on Kano-Delphi-CFA: A case study in China A temperature-sensitive points selection method for machine tool based on rough set and multi-objective adaptive hybrid evolutionary algorithm Enhancing EEG artifact removal through neural architecture search with large kernels Optimal design of an integrated inspection scheme with two adjustable sampling mechanisms for lot disposition A novel product shape design method integrating Kansei engineering and whale optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1