Zhifa Liu , Ruide Zhang , Yujie Wang , Haowei Zhang , Gang Wang , Ying Zhang
{"title":"Continuous discrete minimum error entropy Kalman filter in non-Gaussian noises system","authors":"Zhifa Liu , Ruide Zhang , Yujie Wang , Haowei Zhang , Gang Wang , Ying Zhang","doi":"10.1016/j.dsp.2024.104846","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes continuous discrete linear Kalman filtering algorithm based on the minimum error entropy criterion under non-Gaussian noise environments. Traditional Kalman filters struggle in such environments due to their reliance on Gaussian assumptions. Our approach leverages stochastic differential equations to precisely model system dynamics and integrates the minimum error entropy criterion to capture higher-order statistical properties of non-Gaussian noise. Simulations confirm that the proposed algorithm significantly enhances estimation accuracy and robustness compared to conventional methods, demonstrating its effectiveness in handling complex, noisy environments.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104846"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004718","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes continuous discrete linear Kalman filtering algorithm based on the minimum error entropy criterion under non-Gaussian noise environments. Traditional Kalman filters struggle in such environments due to their reliance on Gaussian assumptions. Our approach leverages stochastic differential equations to precisely model system dynamics and integrates the minimum error entropy criterion to capture higher-order statistical properties of non-Gaussian noise. Simulations confirm that the proposed algorithm significantly enhances estimation accuracy and robustness compared to conventional methods, demonstrating its effectiveness in handling complex, noisy environments.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,