Muhammad Farhan Ul Moazzam , Abhishek Banerjee , Ghani Rahman , Byung Gul Lee
{"title":"Elevation-dependent snow cover dynamics and associated topo-climate impacts in upper Indus River basin","authors":"Muhammad Farhan Ul Moazzam , Abhishek Banerjee , Ghani Rahman , Byung Gul Lee","doi":"10.1016/j.pce.2024.103786","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, Improved Moderate Resolution Imaging Spectro-radiometer (MODIS) snow cover product (MOYDGL06∗) has been used to evaluate the snow cover area (SCA) in Kabul, Jhelum, and Indus river basins for the time period of 2003–2020 with available MODIS land surface temperature (LST), and CHIRPS (precipitation) with objectives to evaluate the spatio-temporal SCA, and climate variables with respect to different elevations analyzed from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 3 (GDEM v3) and also to correlate the climatic variables with SCA. The results presented average annual SCA is around 50.7%–64.7% in sub-basins of UIB, further it has been observed that SCA is decreasing on annual and seasonal timescale in all three basins. Elevation-dependent SCA, temperature, and precipitation presented a mix of trend on annual, seasonal, and monthly timescale at lower and higher altitude in all selected basins. Moreover, it was noticed that topography (slope, & aspect) also influences the SCA in the region. Furthermore, it has been examined that temperature has significant inverse relationship with SCA at middle and higher altitude in Indus, while in Kabul, and Jhelum no significant relationship observed at extreme lower and higher altitudes. It is also evident from relationship between SCA and climate variable that temperature is significantly responsible for decreasing trend of SCA rather than intense precipitation in all three river basins. Thus, all these elevation-dependent changes can improve our hydrological understanding which can have a considerable implication for hydrology, climate science, water resource management and socio-economic activities.</div></div>","PeriodicalId":54616,"journal":{"name":"Physics and Chemistry of the Earth","volume":"136 ","pages":"Article 103786"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of the Earth","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474706524002444","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, Improved Moderate Resolution Imaging Spectro-radiometer (MODIS) snow cover product (MOYDGL06∗) has been used to evaluate the snow cover area (SCA) in Kabul, Jhelum, and Indus river basins for the time period of 2003–2020 with available MODIS land surface temperature (LST), and CHIRPS (precipitation) with objectives to evaluate the spatio-temporal SCA, and climate variables with respect to different elevations analyzed from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model Version 3 (GDEM v3) and also to correlate the climatic variables with SCA. The results presented average annual SCA is around 50.7%–64.7% in sub-basins of UIB, further it has been observed that SCA is decreasing on annual and seasonal timescale in all three basins. Elevation-dependent SCA, temperature, and precipitation presented a mix of trend on annual, seasonal, and monthly timescale at lower and higher altitude in all selected basins. Moreover, it was noticed that topography (slope, & aspect) also influences the SCA in the region. Furthermore, it has been examined that temperature has significant inverse relationship with SCA at middle and higher altitude in Indus, while in Kabul, and Jhelum no significant relationship observed at extreme lower and higher altitudes. It is also evident from relationship between SCA and climate variable that temperature is significantly responsible for decreasing trend of SCA rather than intense precipitation in all three river basins. Thus, all these elevation-dependent changes can improve our hydrological understanding which can have a considerable implication for hydrology, climate science, water resource management and socio-economic activities.
期刊介绍:
Physics and Chemistry of the Earth is an international interdisciplinary journal for the rapid publication of collections of refereed communications in separate thematic issues, either stemming from scientific meetings, or, especially compiled for the occasion. There is no restriction on the length of articles published in the journal. Physics and Chemistry of the Earth incorporates the separate Parts A, B and C which existed until the end of 2001.
Please note: the Editors are unable to consider submissions that are not invited or linked to a thematic issue. Please do not submit unsolicited papers.
The journal covers the following subject areas:
-Solid Earth and Geodesy:
(geology, geochemistry, tectonophysics, seismology, volcanology, palaeomagnetism and rock magnetism, electromagnetism and potential fields, marine and environmental geosciences as well as geodesy).
-Hydrology, Oceans and Atmosphere:
(hydrology and water resources research, engineering and management, oceanography and oceanic chemistry, shelf, sea, lake and river sciences, meteorology and atmospheric sciences incl. chemistry as well as climatology and glaciology).
-Solar-Terrestrial and Planetary Science:
(solar, heliospheric and solar-planetary sciences, geology, geophysics and atmospheric sciences of planets, satellites and small bodies as well as cosmochemistry and exobiology).