Li-Tao Yang , Shao-Fei Zheng , Ruo-Tong Wang , Kai Chen , Yi-Feng Wang , Yan-Ru Yang , Duu-Jong Lee , Xiao-Dong Wang
{"title":"The enhancement effects of internal convection on the heat transport of condensing droplets out of pure steam and moist air","authors":"Li-Tao Yang , Shao-Fei Zheng , Ruo-Tong Wang , Kai Chen , Yi-Feng Wang , Yan-Ru Yang , Duu-Jong Lee , Xiao-Dong Wang","doi":"10.1016/j.ijheatmasstransfer.2024.126397","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, the effect of internal convection on the heat transport of condensing droplets is theoretically and numerically focused on considering two typical working scenes (pure steam and moist air). A three-dimensional transient multiphysics model is first constructed by elaborately coupling time-dependent multiple physics during the dynamic growth of condensing droplets. Considering variable surface wettability and industrially universal applications, heat transport characteristics of condensing droplets in these two scenes are comparatively analyzed over a wide range of the droplet radius (500–1000 μm), contact angle (60–120°), and subcooling (1–50 K). It is found that internal convection resulting from the thermocapillary effect and curved vapor/liquid interface plays a progressively prominent role as the contact angle and subcooling increase, accordingly dominating heat transport within droplets. In the steam scene, internal convection is activated neighboring the triple-phase contact line at which the temperature gradient exists solely. In comparison, in the air case, the external vapor diffusion promotes a non-uniform temperature profile over the droplet surface, and the temperature gradient is extended toward the whole surface with stronger internal convection and heat transport enhancement. In general, the quantitative analysis demonstrates that driven by strong internal convection, the total heat flow rate through the droplet can be increased by several times for both two scenes. Furthermore, using the fundamental dimensionless groups governing internal convection, we put forward an empirical correlation of the droplet Nusselt number in two condensing scenes over wide working conditions.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"236 ","pages":"Article 126397"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012262","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the effect of internal convection on the heat transport of condensing droplets is theoretically and numerically focused on considering two typical working scenes (pure steam and moist air). A three-dimensional transient multiphysics model is first constructed by elaborately coupling time-dependent multiple physics during the dynamic growth of condensing droplets. Considering variable surface wettability and industrially universal applications, heat transport characteristics of condensing droplets in these two scenes are comparatively analyzed over a wide range of the droplet radius (500–1000 μm), contact angle (60–120°), and subcooling (1–50 K). It is found that internal convection resulting from the thermocapillary effect and curved vapor/liquid interface plays a progressively prominent role as the contact angle and subcooling increase, accordingly dominating heat transport within droplets. In the steam scene, internal convection is activated neighboring the triple-phase contact line at which the temperature gradient exists solely. In comparison, in the air case, the external vapor diffusion promotes a non-uniform temperature profile over the droplet surface, and the temperature gradient is extended toward the whole surface with stronger internal convection and heat transport enhancement. In general, the quantitative analysis demonstrates that driven by strong internal convection, the total heat flow rate through the droplet can be increased by several times for both two scenes. Furthermore, using the fundamental dimensionless groups governing internal convection, we put forward an empirical correlation of the droplet Nusselt number in two condensing scenes over wide working conditions.
期刊介绍:
International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems.
Topics include:
-New methods of measuring and/or correlating transport-property data
-Energy engineering
-Environmental applications of heat and/or mass transfer