Reynolds-averaged Navier-Stokes simulations of opposing flow turbulent mixed convection heat transfer in a vertical tube

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2024-11-16 DOI:10.1016/j.ijheatmasstransfer.2024.126406
Kosuke Motegi , Yasuteru Sibamoto , Takashi Hibiki
{"title":"Reynolds-averaged Navier-Stokes simulations of opposing flow turbulent mixed convection heat transfer in a vertical tube","authors":"Kosuke Motegi ,&nbsp;Yasuteru Sibamoto ,&nbsp;Takashi Hibiki","doi":"10.1016/j.ijheatmasstransfer.2024.126406","DOIUrl":null,"url":null,"abstract":"<div><div>This study performed Reynolds-Averaged Navier-Stokes (RANS) simulations of a single-phase turbulent opposing flow mixed convection in a heated vertical circular tube. Previous research has reported that the Launder-Sharma <span><math><mrow><mi>k</mi><mo>−</mo><mrow><mi>ε</mi></mrow></mrow></math></span> model (hereafter the LS model), one of the most popular RANS turbulence models, sometimes overestimates experimental data of heat transfer coefficients for opposing flows. Although the RANS models have been widely applied to opposing flows in various engineering problems, the conditions under which the anomaly in the LS model occurs and the underlying mechanisms remain unclear. This study aimed to understand the model characteristics and their applicability under various mixed convection conditions. This study investigated the LS model, the LS model with the Yap correction, and the <span><math><mrow><msup><mi>v</mi><mn>2</mn></msup><mo>−</mo><mi>f</mi></mrow></math></span> model, comparing them with existing experimental data of the Nusselt number and the friction coefficient in fully developed regions. The LS model remarkably over-predicted the Nusselt number and the friction coefficient under highly buoyant conditions. The error for the Nusselt number was &gt;90 % for <span><math><mrow><msub><mi>N</mi><mrow><mi>B</mi><mo>,</mo><mi>J</mi><mi>F</mi></mrow></msub><mo>≈</mo><mn>3</mn><mspace></mspace><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span>, where <span><math><msub><mi>N</mi><mrow><mi>B</mi><mo>,</mo><mi>J</mi><mi>F</mi></mrow></msub></math></span> is a controlling parameter characterizing the strength of buoyancy influence. The conditions under which the prediction of the LS model failed were linked to those under which reverse flow occurred near the heated wall. We obtained <span><math><mrow><msub><mi>N</mi><mrow><mi>B</mi><mo>,</mo><mi>J</mi><mi>F</mi></mrow></msub><mo>≈</mo><mn>1.25</mn><mspace></mspace><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></math></span> for the reverse flow condition. This condition could be used where the LS model could not be applied. The LS model with Yap correction and <span><math><mrow><msup><mrow><mi>v</mi></mrow><mn>2</mn></msup><mo>−</mo><mi>f</mi></mrow></math></span> model could predict experimental data successfully from forced convection to mixed convection conditions <span><math><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup><mo>&lt;</mo><msub><mi>N</mi><mrow><mi>B</mi><mo>,</mo><mi>J</mi><mi>F</mi></mrow></msub><mo>&lt;</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. For natural convection-dominant conditions <span><math><mrow><msub><mi>N</mi><mrow><mi>B</mi><mo>,</mo><mi>J</mi><mi>F</mi></mrow></msub><mo>&gt;</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>, the LS model with the Yap correction was numerically unstable and could not obtain a converged numerical solution; however, the <span><math><mrow><msup><mrow><mi>v</mi></mrow><mn>2</mn></msup><mo>−</mo><mi>f</mi></mrow></math></span> model stably reproduced the experimental data. By optimizing the model constants included in the Yap correction, the stability and accuracy of the calculations could be improved under highly buoyant opposing flow conditions.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"237 ","pages":"Article 126406"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012353","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study performed Reynolds-Averaged Navier-Stokes (RANS) simulations of a single-phase turbulent opposing flow mixed convection in a heated vertical circular tube. Previous research has reported that the Launder-Sharma kε model (hereafter the LS model), one of the most popular RANS turbulence models, sometimes overestimates experimental data of heat transfer coefficients for opposing flows. Although the RANS models have been widely applied to opposing flows in various engineering problems, the conditions under which the anomaly in the LS model occurs and the underlying mechanisms remain unclear. This study aimed to understand the model characteristics and their applicability under various mixed convection conditions. This study investigated the LS model, the LS model with the Yap correction, and the v2f model, comparing them with existing experimental data of the Nusselt number and the friction coefficient in fully developed regions. The LS model remarkably over-predicted the Nusselt number and the friction coefficient under highly buoyant conditions. The error for the Nusselt number was >90 % for NB,JF3×103, where NB,JF is a controlling parameter characterizing the strength of buoyancy influence. The conditions under which the prediction of the LS model failed were linked to those under which reverse flow occurred near the heated wall. We obtained NB,JF1.25×103 for the reverse flow condition. This condition could be used where the LS model could not be applied. The LS model with Yap correction and v2f model could predict experimental data successfully from forced convection to mixed convection conditions 106<NB,JF<102. For natural convection-dominant conditions NB,JF>102, the LS model with the Yap correction was numerically unstable and could not obtain a converged numerical solution; however, the v2f model stably reproduced the experimental data. By optimizing the model constants included in the Yap correction, the stability and accuracy of the calculations could be improved under highly buoyant opposing flow conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垂直管中对流湍流混合对流传热的雷诺平均纳维-斯托克斯模拟
本研究对加热垂直圆管中的单相湍流对流混合对流进行了雷诺平均纳维-斯托克斯(RANS)模拟。以往的研究表明,Launder-Sharma k-ε 模型(以下简称 LS 模型)作为最常用的 RANS 湍流模型之一,有时会高估对流传热系数的实验数据。尽管 RANS 模型已广泛应用于各种工程问题中的对流,但 LS 模型出现异常的条件及其内在机制仍不清楚。本研究旨在了解各种混合对流条件下的模型特征及其适用性。本研究调查了 LS 模型、LS 模型与 Yap 修正以及 v2-f 模型,并将它们与现有的完全发达地区努塞尔特数和摩擦系数的实验数据进行了比较。在高浮力条件下,LS 模型对努塞尔特数和摩擦系数的预测明显偏高。当 NB,JF≈3×10-3 时,努塞尔特数的误差为 90%,其中 NB,JF 是表征浮力影响强度的控制参数。LS 模型预测失败的条件与加热壁附近发生反向流动的条件有关。我们得出反向流动条件下的 NB,JF≈1.25×10-3 。这种条件可用于 LS 模型无法应用的情况。带有 Yap 修正和 v2-f 模型的 LS 模型可以成功预测从强制对流到混合对流条件下 10-6<NB,JF<10-2 的实验数据。对于自然对流主导条件 NB,JF<10-2,带 Yap 修正的 LS 模型数值不稳定,无法获得收敛的数值解;而 v2-f 模型则稳定地再现了实验数据。通过优化 Yap 修正中的模型常数,可以提高高浮力对流条件下计算的稳定性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Particle sedimentation in cored-wire-arc directed energy deposition: Particle migration and suppression mechanism via ultrasonic vibration The effects of rolling and heaving on flow boiling heat transfer in a 3 × 3 rod bundle channel in a natural circulation system Reynolds-averaged Navier-Stokes simulations of opposing flow turbulent mixed convection heat transfer in a vertical tube Gas slip flow and heat transfer over a semi-confined cylinder in proximity to a solid wall Ingress wave model with purge-mainstream density ratio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1