Long-short-term memory (LSTM)-based modeling of the stiffness of 3D-printed PLA parts

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Letters Pub Date : 2024-10-30 DOI:10.1016/j.matlet.2024.137636
Mohammad Hossein Nikzad , Mohammad Heidari-Rarani , Reza Rasti
{"title":"Long-short-term memory (LSTM)-based modeling of the stiffness of 3D-printed PLA parts","authors":"Mohammad Hossein Nikzad ,&nbsp;Mohammad Heidari-Rarani ,&nbsp;Reza Rasti","doi":"10.1016/j.matlet.2024.137636","DOIUrl":null,"url":null,"abstract":"<div><div>This study applied a computationally efficient Taguchi-based long-short-term memory (LSTM) algorithm to predict the elastic modulus of 3D-printed polylactic acid (PLA) specimens. 128 data points were collected from the literature, and 80% were allocated for training and the rest for the validation of the LSTM algorithm. The results suggested that the LSTM algorithm, configured with 25 units in the first memory cell, 100 units in the second memory cell, the “selu” activation function in the first memory cell, the “elu” activation function in the second memory cell, the RMSprop optimizer, and a learning rate of 0.01, was precisely able to predict the elastic modulus of 3D-printed PLA parts.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"379 ","pages":"Article 137636"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24017762","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study applied a computationally efficient Taguchi-based long-short-term memory (LSTM) algorithm to predict the elastic modulus of 3D-printed polylactic acid (PLA) specimens. 128 data points were collected from the literature, and 80% were allocated for training and the rest for the validation of the LSTM algorithm. The results suggested that the LSTM algorithm, configured with 25 units in the first memory cell, 100 units in the second memory cell, the “selu” activation function in the first memory cell, the “elu” activation function in the second memory cell, the RMSprop optimizer, and a learning rate of 0.01, was precisely able to predict the elastic modulus of 3D-printed PLA parts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于长短期记忆(LSTM)的 3D 打印聚乳酸部件刚度建模
本研究采用了一种计算效率较高的基于田口长短期记忆(LSTM)的算法来预测三维打印聚乳酸(PLA)试样的弹性模量。研究从文献中收集了 128 个数据点,其中 80% 用于训练,其余用于验证 LSTM 算法。结果表明,在第一存储单元中配置 25 个单元、在第二存储单元中配置 100 个单元、在第一存储单元中配置 "selu "激活函数、在第二存储单元中配置 "elu "激活函数、RMSprop 优化器和 0.01 学习率的 LSTM 算法能够精确预测 3D 打印聚乳酸部件的弹性模量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
期刊最新文献
Molecular dynamics simulation of arc ablation on Mo or W doped CuCr contact materials Effects of ultrasonic surface rolling process on the microstructure and wear resistance of 2195 Al-Li alloy processed by laser powder bed fusion Phospholipid micelles-encapsulated perovskite nanocrystals via dual solvent exchange for human hela cervical cancer cells imaging Enhancing heating performance and temperature uniformity of Cu/Ag mesh transparent heaters by a composite reduced graphene oxide layer Novel flexible near-infrared laser detectors based on Bi2S3 nanorods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1