Rapid advancements in large language models for quantitative remote sensing: The case of water depth inversion

IF 5.7 Q1 ENVIRONMENTAL SCIENCES Science of Remote Sensing Pub Date : 2024-10-24 DOI:10.1016/j.srs.2024.100166
Zhongqiang Wu , Wei Shen , Zhihua Mao , Shulei Wu
{"title":"Rapid advancements in large language models for quantitative remote sensing: The case of water depth inversion","authors":"Zhongqiang Wu ,&nbsp;Wei Shen ,&nbsp;Zhihua Mao ,&nbsp;Shulei Wu","doi":"10.1016/j.srs.2024.100166","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comparative analysis of two advanced AI models, ChatGPT and ERNIE, in the context of water depth inversion. Utilizing satellite spectral data and in-situ bathymetric measurements collected from Rushikonda Beach, India, we processed and analyzed the data to generate high-resolution bathymetric maps. Both models demonstrated significant accuracy, with ChatGPT slightly outperforming ERNIE in terms of mean absolute error. The study highlights the advantages of AI models, such as efficient data processing and the ability to integrate multi-modal inputs, while also discussing challenges related to data quality, interpretability, and computational demands. The findings suggest that while both models are highly effective for water depth inversion, ongoing improvements in data handling and model transparency are essential for their broader application in environmental monitoring. This research contributes to the understanding of AI capabilities in geospatial analysis and sets the stage for future enhancements in the field.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"10 ","pages":"Article 100166"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comparative analysis of two advanced AI models, ChatGPT and ERNIE, in the context of water depth inversion. Utilizing satellite spectral data and in-situ bathymetric measurements collected from Rushikonda Beach, India, we processed and analyzed the data to generate high-resolution bathymetric maps. Both models demonstrated significant accuracy, with ChatGPT slightly outperforming ERNIE in terms of mean absolute error. The study highlights the advantages of AI models, such as efficient data processing and the ability to integrate multi-modal inputs, while also discussing challenges related to data quality, interpretability, and computational demands. The findings suggest that while both models are highly effective for water depth inversion, ongoing improvements in data handling and model transparency are essential for their broader application in environmental monitoring. This research contributes to the understanding of AI capabilities in geospatial analysis and sets the stage for future enhancements in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定量遥感大语言模型的快速发展:水深反演案例
本研究以水深反演为背景,对 ChatGPT 和 ERNIE 这两种先进的人工智能模型进行了比较分析。利用从印度 Rushikonda 海滩收集的卫星光谱数据和现场测深数据,我们对数据进行了处理和分析,生成了高分辨率测深图。两个模型都表现出了很高的精度,就平均绝对误差而言,ChatGPT 略优于 ERNIE。研究强调了人工智能模型的优势,如高效的数据处理和整合多模态输入的能力,同时也讨论了与数据质量、可解释性和计算需求相关的挑战。研究结果表明,虽然这两种模型在水深反演方面都非常有效,但要在环境监测中得到更广泛的应用,就必须不断改进数据处理和模型透明度。这项研究有助于人们了解地理空间分析中的人工智能能力,并为该领域未来的发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
期刊最新文献
Global soil moisture mapping at 5 km by combining GNSS reflectometry and machine learning in view of HydroGNSS Coastal vertical land motion across Southeast Asia derived from combining tide gauge and satellite altimetry observations Identifying thermokarst lakes using deep learning and high-resolution satellite images A two-stage deep learning architecture for detection global coastal and offshore submesoscale ocean eddy using SDGSAT-1 multispectral imagery A comprehensive evaluation of satellite-based and reanalysis soil moisture products over the upper Blue Nile Basin, Ethiopia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1