ForestAlign: Automatic forest structure-based alignment for multi-view TLS and ALS point clouds

IF 5.7 Q1 ENVIRONMENTAL SCIENCES Science of Remote Sensing Pub Date : 2025-01-06 DOI:10.1016/j.srs.2024.100194
Juan Castorena , L. Turin Dickman , Adam J. Killebrew , James R. Gattiker , Rod Linn , E. Louise Loudermilk
{"title":"ForestAlign: Automatic forest structure-based alignment for multi-view TLS and ALS point clouds","authors":"Juan Castorena ,&nbsp;L. Turin Dickman ,&nbsp;Adam J. Killebrew ,&nbsp;James R. Gattiker ,&nbsp;Rod Linn ,&nbsp;E. Louise Loudermilk","doi":"10.1016/j.srs.2024.100194","DOIUrl":null,"url":null,"abstract":"<div><div>Access to highly detailed models of heterogeneous forests, spanning from the near surface to above the tree canopy at varying scales, is increasingly in demand. This enables advanced computational tools for analysis, planning, and ecosystem management. LiDAR sensors, available through terrestrial (TLS) and aerial (ALS) scanning platforms, have become established as primary technologies for forest monitoring due to their capability to rapidly collect precise 3D structural information directly. Selection of these platforms typically depends on the scales (tree-level, plot, regional) required for observational or intervention studies. Forestry now recognizes the benefits of a multi-scale approach, leveraging the strengths of each platform while minimizing individual source uncertainties. However, effective integration of these LiDAR sources relies heavily on efficient multi-scale, multi-view co-registration or point-cloud alignment methods. In GPS-denied areas, forestry has traditionally relied on target-based co-registration methods (e.g., reflective or marked trees), which are impractical at scale. Here, we propose ForestAlign: an effective, target-less, and fully automatic co-registration method for aligning forest point clouds collected from multi-view, multi-scale LiDAR sources. Our co-registration approach employs an incremental alignment strategy, grouping and aggregating 3D points based on increasing levels of structural complexity. This strategy aligns 3D points from less complex (e.g., ground surface) to more complex structures (e.g., tree trunks/branches, foliage) sequentially, refining alignment iteratively. Empirical evidence demonstrates the method’s effectiveness in aligning TLS-to-TLS and TLS-to-ALS scans locally, across various ecosystem conditions, including pre/post fire treatment effects. In TLS-to-TLS scenarios, parameter RMSE errors were less than 0.75 degrees in rotation and 5.5 cm in translation. For TLS-to-ALS, corresponding errors were less than 0.8 degrees and 8 cm, respectively. These results, show that our ForestAlign method is effective for co-registering both TLS-to-TLS and TLS-to-ALS in such forest environments, without relying on targets, while achieving high performance.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"11 ","pages":"Article 100194"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Access to highly detailed models of heterogeneous forests, spanning from the near surface to above the tree canopy at varying scales, is increasingly in demand. This enables advanced computational tools for analysis, planning, and ecosystem management. LiDAR sensors, available through terrestrial (TLS) and aerial (ALS) scanning platforms, have become established as primary technologies for forest monitoring due to their capability to rapidly collect precise 3D structural information directly. Selection of these platforms typically depends on the scales (tree-level, plot, regional) required for observational or intervention studies. Forestry now recognizes the benefits of a multi-scale approach, leveraging the strengths of each platform while minimizing individual source uncertainties. However, effective integration of these LiDAR sources relies heavily on efficient multi-scale, multi-view co-registration or point-cloud alignment methods. In GPS-denied areas, forestry has traditionally relied on target-based co-registration methods (e.g., reflective or marked trees), which are impractical at scale. Here, we propose ForestAlign: an effective, target-less, and fully automatic co-registration method for aligning forest point clouds collected from multi-view, multi-scale LiDAR sources. Our co-registration approach employs an incremental alignment strategy, grouping and aggregating 3D points based on increasing levels of structural complexity. This strategy aligns 3D points from less complex (e.g., ground surface) to more complex structures (e.g., tree trunks/branches, foliage) sequentially, refining alignment iteratively. Empirical evidence demonstrates the method’s effectiveness in aligning TLS-to-TLS and TLS-to-ALS scans locally, across various ecosystem conditions, including pre/post fire treatment effects. In TLS-to-TLS scenarios, parameter RMSE errors were less than 0.75 degrees in rotation and 5.5 cm in translation. For TLS-to-ALS, corresponding errors were less than 0.8 degrees and 8 cm, respectively. These results, show that our ForestAlign method is effective for co-registering both TLS-to-TLS and TLS-to-ALS in such forest environments, without relying on targets, while achieving high performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
期刊最新文献
Volatility characteristics and hyperspectral-based detection models of diesel in soils Combining machine learning algorithms for bridging gaps in GRACE and GRACE Follow-On missions using ERA5-Land reanalysis Investigating the contribution of understory to radiative transfer simulations through reconstructing 3-D realistic temperate broadleaf forest scenes based on multi-platform laser scanning Using airborne LiDAR and enhanced-geolocated GEDI metrics to map structural traits over a Mediterranean forest ForestAlign: Automatic forest structure-based alignment for multi-view TLS and ALS point clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1