{"title":"Contact properties of titanium nitride electrode in vertical channel-all-around indium–gallium–zinc–oxide transistors","authors":"Xianglie Sun, Shujuan Mao, Congyan Lu, Di Geng, Ling Li, Guilei Wang, Chao Zhao","doi":"10.1007/s10854-024-13781-0","DOIUrl":null,"url":null,"abstract":"<div><p>Source/drain contact resistance (<i>R</i><sub>SD</sub>) is a decider of device performance in nanoscale indium–gallium–zinc–oxide (IGZO) transistors, especially in the ones featuring a vertical channel. In this work, titanium nitride (TiN), prepared by magnetron sputtering (MS) and ion beam sputtering (IBS), is adopted as the S/D electrodes of vertical channel-all-around (VCAA) IGZO transistors, and the contact properties are revealed. Both MS-TiN and IBS-TiN form Schottky contacts on IGZO, strongly limiting the ON-state current (<i>I</i><sub>ON</sub>) of VCAA IGZO devices with a 50 nm gate length. Such Schottky contacts result from metal oxidation during the atomic layer deposition (ALD) process of IGZO. IBS-TiN/IGZO shows a lower <i>R</i><sub>SD</sub> of 7.41 × 10<sup>−2</sup> MΩ as compared to MS-TiN/IGZO with an <i>R</i><sub>SD</sub> of 2.15 MΩ. The two kinds of TiN have an almost equal work function (<i>φ</i><sub>WF</sub>) of around 4.7 eV, the lower <i>R</i><sub>SD</sub> of IBS-TiN/IGZO is derived from the reduced tunneling resistance rather than Schottky barrier resistance. IBS-TiN appears denser with no detectable intergranular porosity whereas MS-TiN presents a typical microstructure comprising coarse and columnar grains with visible intercolumnar porosities, making IBS-TiN more robust against oxidation than MS-TiN. Also, the higher N/Ti ratio in IBS-TiN strengthens its antioxidation characteristic to some extent.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 31","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13781-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Source/drain contact resistance (RSD) is a decider of device performance in nanoscale indium–gallium–zinc–oxide (IGZO) transistors, especially in the ones featuring a vertical channel. In this work, titanium nitride (TiN), prepared by magnetron sputtering (MS) and ion beam sputtering (IBS), is adopted as the S/D electrodes of vertical channel-all-around (VCAA) IGZO transistors, and the contact properties are revealed. Both MS-TiN and IBS-TiN form Schottky contacts on IGZO, strongly limiting the ON-state current (ION) of VCAA IGZO devices with a 50 nm gate length. Such Schottky contacts result from metal oxidation during the atomic layer deposition (ALD) process of IGZO. IBS-TiN/IGZO shows a lower RSD of 7.41 × 10−2 MΩ as compared to MS-TiN/IGZO with an RSD of 2.15 MΩ. The two kinds of TiN have an almost equal work function (φWF) of around 4.7 eV, the lower RSD of IBS-TiN/IGZO is derived from the reduced tunneling resistance rather than Schottky barrier resistance. IBS-TiN appears denser with no detectable intergranular porosity whereas MS-TiN presents a typical microstructure comprising coarse and columnar grains with visible intercolumnar porosities, making IBS-TiN more robust against oxidation than MS-TiN. Also, the higher N/Ti ratio in IBS-TiN strengthens its antioxidation characteristic to some extent.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.