Structure-selectivity relationship of anion exchange resins with different quaternary amine functional groups for highly selective removal of PFAS from chromium-plating wastewater
Xiangzhe Jiang , Yihua Luo , Shuang Mu , Bojiang Meng , Wei Wang , Gang Yu , Shubo Deng
{"title":"Structure-selectivity relationship of anion exchange resins with different quaternary amine functional groups for highly selective removal of PFAS from chromium-plating wastewater","authors":"Xiangzhe Jiang , Yihua Luo , Shuang Mu , Bojiang Meng , Wei Wang , Gang Yu , Shubo Deng","doi":"10.1016/j.watres.2024.122749","DOIUrl":null,"url":null,"abstract":"<div><div>Anion exchange resin (AER) adsorption is an effective technology for the removal of per- and polyfluoroalkyl substances (PFAS) from wastewater. However, existing AERs with tributylamine functional groups have poor adsorption selectivity for perfluorinated carboxylic acids (PFCAs) and 6:2 fluorotelomer sulfonate (6:2 FTS), and the structure-selectivity relationship is still unclear. In this study, several novel gel AERs with long-chain amine groups were prepared. It was found that their adsorption selectivity for 6:2 FTS was 3.3–5.1 times that of commercial AERs, and the adsorption amount for 6:2 FTS in chromium-plating wastewater was 2.1 times that of the commercial PFA694E. On this basis, we synthesized 16 AERs with different quaternary amine functional groups, and explored the structure-selectivity relationship through the selectivity coefficients and adsorption energies of different AERs for seven typical PFAS. The order of adsorption selectivity of AERs with different quaternary amine groups for PFAS was AER-(12–1-1) > AER-(8–1-1) > AER-(4–4-4) > AER-(4–1-1) ≈ AER-(2–2-2) > AER-(1–1-1), where the three numbers are the carbon-chain lengths of the three alkyl groups attached to the nitrogen atom of the quaternary amine group. Density functional theory (DFT) calculations confirmed the enhanced adsorption selectivity and contribution of both non-electrostatic and electrostatic interactions by the long-chain amine groups, and a quantitative relationship between theoretical calculations and experimental results was established. These results could provide guidance for the development of efficient adsorbents for PFAS removal from wastewater.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122749"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016488","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anion exchange resin (AER) adsorption is an effective technology for the removal of per- and polyfluoroalkyl substances (PFAS) from wastewater. However, existing AERs with tributylamine functional groups have poor adsorption selectivity for perfluorinated carboxylic acids (PFCAs) and 6:2 fluorotelomer sulfonate (6:2 FTS), and the structure-selectivity relationship is still unclear. In this study, several novel gel AERs with long-chain amine groups were prepared. It was found that their adsorption selectivity for 6:2 FTS was 3.3–5.1 times that of commercial AERs, and the adsorption amount for 6:2 FTS in chromium-plating wastewater was 2.1 times that of the commercial PFA694E. On this basis, we synthesized 16 AERs with different quaternary amine functional groups, and explored the structure-selectivity relationship through the selectivity coefficients and adsorption energies of different AERs for seven typical PFAS. The order of adsorption selectivity of AERs with different quaternary amine groups for PFAS was AER-(12–1-1) > AER-(8–1-1) > AER-(4–4-4) > AER-(4–1-1) ≈ AER-(2–2-2) > AER-(1–1-1), where the three numbers are the carbon-chain lengths of the three alkyl groups attached to the nitrogen atom of the quaternary amine group. Density functional theory (DFT) calculations confirmed the enhanced adsorption selectivity and contribution of both non-electrostatic and electrostatic interactions by the long-chain amine groups, and a quantitative relationship between theoretical calculations and experimental results was established. These results could provide guidance for the development of efficient adsorbents for PFAS removal from wastewater.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.