Xinyue Liang, Xiaolong Yao, Sijie Chen, Wei Wang, Hong Zhu, Qingwei Bu, Zheng Liu
{"title":"Investigation of efficient adsorption-electrochemical degradation performance of ZIF-8/MWCNTs nanocomposites toward 2,4-dichlorophenol","authors":"Xinyue Liang, Xiaolong Yao, Sijie Chen, Wei Wang, Hong Zhu, Qingwei Bu, Zheng Liu","doi":"10.1016/j.seppur.2024.130385","DOIUrl":null,"url":null,"abstract":"The highly toxic and recalcitrant organic pollutant, 2,4-dichlorophenol (2,4-DCP), is commonly found in wastewater. Therefore, it is critical to investigate novel techniques for the efficient removal of 2,4-DCP from wastewater. The present study employed a one-step synthesis method to fabricate ZIF-8/multi-walled carbon nanotubes (ZIF-8/MWCNTs) nanocomposites with well-defined mesoporous structures, which were subsequently coated onto carbon cloth (CC) to form the anode ZIF-8/MWCNTs/CC. Subsequently, the adsorption performance of ZIF-8/MWCNTs toward 2,4-DCP and the adsorption-electrochemical degradation performance of ZIF-8/MWCNTs/CC toward 2,4-DCP were investigated. ZIF-8/MWCNTs exhibit exceptional adsorption capacity and rate toward the 2,4-DCP. At 303 K, it achieved a saturated adsorption amount as high as 1056.78 mg·g<sup>−1</sup> within only 30 min of reaching equilibrium. Moreover, when coated on CC substrates, the internal pore structure of ZIF-8/MWCNTs is effectively exploited during the adsorption. In addition, the incorporation of MWCNTs enhances the conductivity of the ZIF-8/MWCNTs/CC electrodes, leading to reduced resistance and improved electron transfer rate. Notably, ZIF-8/MWCNTs/CC enabled complete removal of a 25 mg·L<sup>-1</sup> solution of 2,4-DCP within only 90 min and a 50 mg · L<sup>-1</sup> solution within 120 min. Furthermore, the degradation mechanism of 2,4-DCP was analyzed by means of DFT modeling theoretical calculations and intermediate product determination analysis, while evaluating the toxicity of the generated material was evaluated. This study provides improved solutions and strategies for the treatment of chlorophenolic compound pollution in wastewater.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130385","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The highly toxic and recalcitrant organic pollutant, 2,4-dichlorophenol (2,4-DCP), is commonly found in wastewater. Therefore, it is critical to investigate novel techniques for the efficient removal of 2,4-DCP from wastewater. The present study employed a one-step synthesis method to fabricate ZIF-8/multi-walled carbon nanotubes (ZIF-8/MWCNTs) nanocomposites with well-defined mesoporous structures, which were subsequently coated onto carbon cloth (CC) to form the anode ZIF-8/MWCNTs/CC. Subsequently, the adsorption performance of ZIF-8/MWCNTs toward 2,4-DCP and the adsorption-electrochemical degradation performance of ZIF-8/MWCNTs/CC toward 2,4-DCP were investigated. ZIF-8/MWCNTs exhibit exceptional adsorption capacity and rate toward the 2,4-DCP. At 303 K, it achieved a saturated adsorption amount as high as 1056.78 mg·g−1 within only 30 min of reaching equilibrium. Moreover, when coated on CC substrates, the internal pore structure of ZIF-8/MWCNTs is effectively exploited during the adsorption. In addition, the incorporation of MWCNTs enhances the conductivity of the ZIF-8/MWCNTs/CC electrodes, leading to reduced resistance and improved electron transfer rate. Notably, ZIF-8/MWCNTs/CC enabled complete removal of a 25 mg·L-1 solution of 2,4-DCP within only 90 min and a 50 mg · L-1 solution within 120 min. Furthermore, the degradation mechanism of 2,4-DCP was analyzed by means of DFT modeling theoretical calculations and intermediate product determination analysis, while evaluating the toxicity of the generated material was evaluated. This study provides improved solutions and strategies for the treatment of chlorophenolic compound pollution in wastewater.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.