Oxygen vacancy mediated and enhanced metal-P bonds for stabilizing reconstruction for alkaline freshwater and seawater electrolysis

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2024-11-05 DOI:10.1039/d4ta06201a
Lei Jin, Hui Xu, Kun Wang, Yang Liu, Xingyue Qian, Guangyu He, Haiqun Chen
{"title":"Oxygen vacancy mediated and enhanced metal-P bonds for stabilizing reconstruction for alkaline freshwater and seawater electrolysis","authors":"Lei Jin, Hui Xu, Kun Wang, Yang Liu, Xingyue Qian, Guangyu He, Haiqun Chen","doi":"10.1039/d4ta06201a","DOIUrl":null,"url":null,"abstract":"The performance of electrochemical water splitting can be effectively enhanced by preventing irreversible structural distortion that leads to the leaching of active elements. In this study, a porous grass-shaped Fe<small><sub>2</sub></small>P/Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-Ov catalyst was synthesized using oxygen vacancies (Ov), exhibiting robust M–P bonds. Both experimental and theoretical investigations show that these strong M–P bonds play a crucial role in stabilizing electrochemical transformation of the precursor catalyst to active Ni, Fe-(oxy)hydroxide species, thereby reducing Fe loss. Additionally, the enhanced orbital coupling weakens the OH–H bonds in the H<small><sub>2</sub></small>O molecule. Remarkably, Fe<small><sub>2</sub></small>P/Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-Ov demonstrates exceptional OER and HER activity and stability in both alkaline freshwater and seawater solutions by preventing the leaching of Fe elements. This research underscores the transition from metal–organic frameworks to the evolution of metal oxides into metal phosphides and offers insights into inhibiting the leaching of active elements.","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06201a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of electrochemical water splitting can be effectively enhanced by preventing irreversible structural distortion that leads to the leaching of active elements. In this study, a porous grass-shaped Fe2P/Ni5P4-Ov catalyst was synthesized using oxygen vacancies (Ov), exhibiting robust M–P bonds. Both experimental and theoretical investigations show that these strong M–P bonds play a crucial role in stabilizing electrochemical transformation of the precursor catalyst to active Ni, Fe-(oxy)hydroxide species, thereby reducing Fe loss. Additionally, the enhanced orbital coupling weakens the OH–H bonds in the H2O molecule. Remarkably, Fe2P/Ni5P4-Ov demonstrates exceptional OER and HER activity and stability in both alkaline freshwater and seawater solutions by preventing the leaching of Fe elements. This research underscores the transition from metal–organic frameworks to the evolution of metal oxides into metal phosphides and offers insights into inhibiting the leaching of active elements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧空位介导和增强金属-P 键,用于碱性淡水和海水电解的稳定重建
通过防止导致活性元素沥滤的不可逆结构畸变,可有效提高电化学水分离的性能。本研究利用氧空位(Ov)合成了一种多孔禾草形 Fe2P/Ni5P4-Ov 催化剂,该催化剂表现出很强的 M-P 键。实验和理论研究均表明,这些强 M-P 键在稳定前驱体催化剂向活性镍、铁(氧)氢氧化物物种的电化学转化过程中发挥了至关重要的作用,从而减少了铁的损失。此外,增强的轨道耦合减弱了 H2O 分子中的 OH-H 键。值得注意的是,Fe2P/Ni5P4-Ov 通过防止铁元素的沥滤,在碱性淡水和海水溶液中均表现出卓越的 OER 和 HER 活性和稳定性。这项研究强调了从金属有机框架到金属氧化物演变为金属磷化物的过渡,并为抑制活性元素的沥滤提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Corrigendum to "Probiotic bacterial adsorption coupled with CRISPR/Cas12a system for mercury (II) ions detection" [Biosens. Bioelectron. 263 (2024) 116627]. Retraction notice to "A comprehensive study on transparent conducting oxides in compact microbial fuel cells: Integrated spectroscopic and electrochemical analyses for monitoring biofilm growth" [Biosens. Bioelectron. 250 (2024) 116067]. The value of electrochemical ratiometry in immunosensing: A systematic study. Conductive single enzyme nanocomposites prepared by in-situ growth of nanoscale polyaniline for high performance enzymatic bioelectrode. A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1