StreaMD: the toolkit for high-throughput molecular dynamics simulations

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-11-05 DOI:10.1186/s13321-024-00918-w
Aleksandra Ivanova, Olena Mokshyna, Pavel Polishchuk
{"title":"StreaMD: the toolkit for high-throughput molecular dynamics simulations","authors":"Aleksandra Ivanova,&nbsp;Olena Mokshyna,&nbsp;Pavel Polishchuk","doi":"10.1186/s13321-024-00918-w","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular dynamics simulations serve as a prevalent approach for investigating the dynamic behaviour of proteins and protein–ligand complexes. Due to its versatility and speed, GROMACS stands out as a commonly utilized software platform for executing molecular dynamics simulations. However, its effective utilization requires substantial expertise in configuring, executing, and interpreting molecular dynamics trajectories. Existing automation tools are constrained in their capability to conduct simulations for large sets of compounds with minimal user intervention, or in their ability to distribute simulations across multiple servers. To address these challenges, we developed a Python-based tool that streamlines all phases of molecular dynamics simulations, encompassing preparation, execution, and analysis. This tool minimizes the required knowledge for users engaging in molecular dynamics simulations and can efficiently operate across multiple servers within a network or a cluster. Notably, the tool not only automates trajectory simulation but also facilitates the computation of free binding energies for protein–ligand complexes and generates interaction fingerprints across the trajectory. Our study demonstrated the applicability of this tool on several benchmark datasets. Additionally, we provided recommendations for end-users to effectively utilize the tool.</p><p><b>Scientific contribution</b></p><p>The developed tool, StreaMD, is applicable to different systems (proteins, ligands and their complexes including co-factors) and requires a little user knowledge to setup and run molecular dynamics simulations. Other features of StreaMD are seamless integration with calculation of MM-GBSA/PBSA binding free energies and protein-ligand interaction fingerprints, and running of simulations within distributed environments. All these will facilitate routine and massive molecular dynamics simulations.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00918-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00918-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular dynamics simulations serve as a prevalent approach for investigating the dynamic behaviour of proteins and protein–ligand complexes. Due to its versatility and speed, GROMACS stands out as a commonly utilized software platform for executing molecular dynamics simulations. However, its effective utilization requires substantial expertise in configuring, executing, and interpreting molecular dynamics trajectories. Existing automation tools are constrained in their capability to conduct simulations for large sets of compounds with minimal user intervention, or in their ability to distribute simulations across multiple servers. To address these challenges, we developed a Python-based tool that streamlines all phases of molecular dynamics simulations, encompassing preparation, execution, and analysis. This tool minimizes the required knowledge for users engaging in molecular dynamics simulations and can efficiently operate across multiple servers within a network or a cluster. Notably, the tool not only automates trajectory simulation but also facilitates the computation of free binding energies for protein–ligand complexes and generates interaction fingerprints across the trajectory. Our study demonstrated the applicability of this tool on several benchmark datasets. Additionally, we provided recommendations for end-users to effectively utilize the tool.

Scientific contribution

The developed tool, StreaMD, is applicable to different systems (proteins, ligands and their complexes including co-factors) and requires a little user knowledge to setup and run molecular dynamics simulations. Other features of StreaMD are seamless integration with calculation of MM-GBSA/PBSA binding free energies and protein-ligand interaction fingerprints, and running of simulations within distributed environments. All these will facilitate routine and massive molecular dynamics simulations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
StreaMD:高通量分子动力学模拟工具包
分子动力学模拟是研究蛋白质和蛋白质配体复合物动态行为的常用方法。由于其多功能性和快速性,GROMACS 成为执行分子动力学模拟的常用软件平台。然而,要有效利用它,需要大量配置、执行和解释分子动力学轨迹的专业知识。现有的自动化工具在对大量化合物进行仿真时,只能尽量减少用户干预,或者在多个服务器之间分配仿真的能力方面受到限制。为了应对这些挑战,我们开发了一种基于 Python 的工具,可以简化分子动力学模拟的所有阶段,包括准备、执行和分析。该工具最大限度地减少了用户进行分子动力学模拟所需的知识,并能在网络或集群内的多台服务器上高效运行。值得注意的是,该工具不仅能自动进行轨迹模拟,还能帮助计算蛋白质配体复合物的自由结合能,并生成整个轨迹的相互作用指纹。我们的研究在多个基准数据集上证明了该工具的适用性。此外,我们还为最终用户提供了有效利用该工具的建议。科学贡献 开发的工具 StreaMD 适用于不同的系统(蛋白质、配体及其复合物,包括辅助因子),用户只需具备少量知识即可设置和运行分子动力学模拟。StreaMD 的其他特点还包括无缝集成 MM-GBSA/PBSA 结合自由能和蛋白质配体相互作用指纹的计算,以及在分布式环境中运行模拟。所有这些都将为常规和大规模分子动力学模拟提供便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
One size does not fit all: revising traditional paradigms for assessing accuracy of QSAR models used for virtual screening Chemical space as a unifying theme for chemistry Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1