Study on the hydrolysis characteristics of polymeric aluminum chloride forced by fine bubbles and its key factors affecting the efficiency and capacity of forcing hydrolysis
Xiaojiang Huang , Kunyu Chen , Zhiqiang Zhang , Chunbo Li , Ping Li , Xuan Wang , Jinsuo Lu
{"title":"Study on the hydrolysis characteristics of polymeric aluminum chloride forced by fine bubbles and its key factors affecting the efficiency and capacity of forcing hydrolysis","authors":"Xiaojiang Huang , Kunyu Chen , Zhiqiang Zhang , Chunbo Li , Ping Li , Xuan Wang , Jinsuo Lu","doi":"10.1016/j.watres.2024.122757","DOIUrl":null,"url":null,"abstract":"<div><div>Enhanced coagulation is an important way to remove natural organic matter and reduce disinfection by-products in traditional water treatment processes, in which the micromolecular organic matter that is difficult to be removed during conventional coagulation can be enhanced more conveniently by modulating the dominant Al species in the traditional metal salt coagulants (e.g., polymeric aluminum chloride, PACl). Based on the forcing hydrolysis characteristics of fine bubbles due to the adsorption of hydroxide ions on their surfaces, this study verified the adaptability of the forced PACl hydrolysis by fine bubbles under different operating conditions objectively and comprehensively. The morphological changes of PACl before and after forced hydrolysis by fine bubbles were characterized figuratively, and the evolution of the dominant Al species before and after forced hydrolysis by fine bubbles was reasonably elaborated. The experimental results showed that fine bubbles had the effect of forcing the hydrolysis of PACl with different degrees of alkalinity and modulating the dominant Al species. It was innovatively found that the mass transfer efficiency of the fine bubbles determined their efficiency in forcing PACl hydrolysis (Pearson's <em>r</em> = -0.9423) and the concentration of fine bubbles affected their capacity to force PACl hydrolysis (Pearson's <em>r</em> = 0.8189). At pH = 7 and an air flow rate of 20 mL/min, the DOC concentration of micromolecular organics and the DOC removal efficiency of total organics could be reduced by 0.54 mg/L and enhanced by 12.6 %, respectively, after forced PACl hydrolysis by fine bubbles. While deepening the mechanism of forced PACl hydrolysis by fine bubbles, the above results preliminarily verified the relevance and feasibility of modulating the dominant Al species through forced PACl hydrolysis by fine bubbles to improve the coagulation efficiency, which provided theoretical and data support for the construction of a fine bubble-enhanced coagulation process for drinking water treatment plants.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122757"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016567","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enhanced coagulation is an important way to remove natural organic matter and reduce disinfection by-products in traditional water treatment processes, in which the micromolecular organic matter that is difficult to be removed during conventional coagulation can be enhanced more conveniently by modulating the dominant Al species in the traditional metal salt coagulants (e.g., polymeric aluminum chloride, PACl). Based on the forcing hydrolysis characteristics of fine bubbles due to the adsorption of hydroxide ions on their surfaces, this study verified the adaptability of the forced PACl hydrolysis by fine bubbles under different operating conditions objectively and comprehensively. The morphological changes of PACl before and after forced hydrolysis by fine bubbles were characterized figuratively, and the evolution of the dominant Al species before and after forced hydrolysis by fine bubbles was reasonably elaborated. The experimental results showed that fine bubbles had the effect of forcing the hydrolysis of PACl with different degrees of alkalinity and modulating the dominant Al species. It was innovatively found that the mass transfer efficiency of the fine bubbles determined their efficiency in forcing PACl hydrolysis (Pearson's r = -0.9423) and the concentration of fine bubbles affected their capacity to force PACl hydrolysis (Pearson's r = 0.8189). At pH = 7 and an air flow rate of 20 mL/min, the DOC concentration of micromolecular organics and the DOC removal efficiency of total organics could be reduced by 0.54 mg/L and enhanced by 12.6 %, respectively, after forced PACl hydrolysis by fine bubbles. While deepening the mechanism of forced PACl hydrolysis by fine bubbles, the above results preliminarily verified the relevance and feasibility of modulating the dominant Al species through forced PACl hydrolysis by fine bubbles to improve the coagulation efficiency, which provided theoretical and data support for the construction of a fine bubble-enhanced coagulation process for drinking water treatment plants.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.