Jindrich Fanfrlik, Jan Řezáč, Drahomír Hnyk, Josef Holub
{"title":"Heats of Formation on the Way from B2H6 to B20H16: Thermochemical Consequences of Multicenter Bonding in Ab initio and DFT Methods","authors":"Jindrich Fanfrlik, Jan Řezáč, Drahomír Hnyk, Josef Holub","doi":"10.1039/d4dt02589j","DOIUrl":null,"url":null,"abstract":"The objective of this study is to evaluate the effectiveness of various computational methods in reproducing the experimental heats of formation of boron hydrides using the atomization energy ap- proach. The results have demonstrated that the empirical dispersion combined with the BJ damping function provided too large intramolecular dispersion energies, thereby compromising the accuracy of the outcomes produced by the DFT-D3 methods. Additionally, the CCSD(T) method has reproduced the experimental values only when combined with a basis set optimized for an accurate description of the core-valence correlation effect. Furthermore, the number of multicenter bonds present in the molecules under examination has also reflected their stability, as indicated by the heats of formation. Finally, a five-center two-electron (5c-2e) bond has emerged in B5H9, by applying the Intrinsic Bond Orbital (IBO) method.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02589j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to evaluate the effectiveness of various computational methods in reproducing the experimental heats of formation of boron hydrides using the atomization energy ap- proach. The results have demonstrated that the empirical dispersion combined with the BJ damping function provided too large intramolecular dispersion energies, thereby compromising the accuracy of the outcomes produced by the DFT-D3 methods. Additionally, the CCSD(T) method has reproduced the experimental values only when combined with a basis set optimized for an accurate description of the core-valence correlation effect. Furthermore, the number of multicenter bonds present in the molecules under examination has also reflected their stability, as indicated by the heats of formation. Finally, a five-center two-electron (5c-2e) bond has emerged in B5H9, by applying the Intrinsic Bond Orbital (IBO) method.