Long-Term Temperature Impacts of the Hunga Volcanic Eruption in the Stratosphere and Above

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-11-04 DOI:10.1029/2024GL111500
William J. Randel, Xinyue Wang, Jon Starr, Rolando R. Garcia, Douglas Kinnison
{"title":"Long-Term Temperature Impacts of the Hunga Volcanic Eruption in the Stratosphere and Above","authors":"William J. Randel,&nbsp;Xinyue Wang,&nbsp;Jon Starr,&nbsp;Rolando R. Garcia,&nbsp;Douglas Kinnison","doi":"10.1029/2024GL111500","DOIUrl":null,"url":null,"abstract":"<p>Global average upper atmosphere temperature changes linked with the Hunga volcanic eruption (January 2022) are analyzed based on satellite measurements and compared with chemistry-climate model simulations. Results show stratospheric cooling of −0.5 to −1.0 K in the middle and upper stratosphere during 2022 through middle 2023, followed by stronger cooling (−1.0 to −2.0 K) in the mesosphere after middle 2023. The cooling patterns follow the upward propagating water vapor (H<sub>2</sub>O) anomalies from Hunga, and similar behavior is found between observations and model simulations. While the stratospheric cooling is mainly due to radiative cooling from enhanced H<sub>2</sub>O, the mesospheric temperature changes result from ozone losses in the mesosphere, which are in-turn driven by HO<sub>x</sub> radicals from Hunga H<sub>2</sub>O. Comparisons with the multi-decade climate record show that Hunga impacts on stratospheric temperatures have similar magnitude, but opposite sign, to temperature effects from the large El Chichón (1982) and Pinatubo (1991) volcanic eruptions.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 21","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111500","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111500","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Global average upper atmosphere temperature changes linked with the Hunga volcanic eruption (January 2022) are analyzed based on satellite measurements and compared with chemistry-climate model simulations. Results show stratospheric cooling of −0.5 to −1.0 K in the middle and upper stratosphere during 2022 through middle 2023, followed by stronger cooling (−1.0 to −2.0 K) in the mesosphere after middle 2023. The cooling patterns follow the upward propagating water vapor (H2O) anomalies from Hunga, and similar behavior is found between observations and model simulations. While the stratospheric cooling is mainly due to radiative cooling from enhanced H2O, the mesospheric temperature changes result from ozone losses in the mesosphere, which are in-turn driven by HOx radicals from Hunga H2O. Comparisons with the multi-decade climate record show that Hunga impacts on stratospheric temperatures have similar magnitude, but opposite sign, to temperature effects from the large El Chichón (1982) and Pinatubo (1991) volcanic eruptions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洪加火山爆发对平流层和上空温度的长期影响
根据卫星测量结果分析了与Hunga火山爆发(2022年1月)有关的全球高层大气平均温度变化,并与化学-气候模型模拟结果进行了比较。结果表明,2022 年至 2023 年中期,平流层中层和上层的降温幅度为-0.5 至-1.0 K,2023 年中期以后,中层的降温幅度更大(-1.0 至-2.0 K)。降温模式与从 Hunga 开始向上传播的水汽(H2O)异常相一致,观测结果与模式模拟结果之间也有相似之处。平流层的冷却主要是由于 H2O 增强产生的辐射冷却,而中间层的温度变化则是由于中间层的臭氧损失,而臭氧损失又是由 Hunga H2O 产生的 HOx 自由基驱动的。与几十年气候记录的比较表明,Hunga 对平流层温度的影响与大型奇雄火山爆发(1982 年)和皮纳图博火山爆发(1991 年)对温度的影响程度相似,但符号相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments With Global AI-Based Weather Models Light Limitation of Poleward Coral Reef Expansion During Past Warm Climates A Factor Two Difference in 21st-Century Greenland Ice Sheet Surface Mass Balance Projections From Three Regional Climate Models Under a Strong Warming Scenario (SSP5-8.5) Coastal Supra-Permafrost Aquifers of the Arctic and Their Significant Groundwater, Carbon, and Nitrogen Fluxes Enablement or Suppression of Collisionless Magnetic Reconnection by the Background Plasma Beta and Guide Field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1