{"title":"Greenly Synthesized Conducting Polymer Nanotunnels with Metal-Hydroxide Nanobundles in Single Dais for Unmitigated Water Oxidation.","authors":"Kuppusamy Rajan, Dhanasingh Thiruvengadam, Krishnan Umapathy, Murugan Muthamildevi, Muthukumaran Sangamithirai, Jayaraman Jayabharathi, Manoharan Padmavathy","doi":"10.1021/acs.langmuir.4c02586","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical water splitting required efficient electrocatalysts to produce clean hydrogen fuel. Here, we adopted greenway coprecipitation (GC) method to synthesize conducting polymer (CP) nanotunnel network affixed with luminal-abluminal CoNi hydroxides (GC-CoNiCP), namely, GC-Co<sub>1</sub>Ni<sub>2</sub>CP, GC-Co<sub>1.5</sub>Ni<sub>1.5</sub>CP, and GC-Co<sub>2</sub>Ni<sub>1</sub>CP. The active catalyst, GC-Co<sub>2</sub>Ni<sub>1</sub>CP/GC, has low oxygen evolution reaction (OER) overpotential (307 mV) and a smaller Tafel slope (47 mV dec<sup>-1</sup>) than IrO<sub>2</sub> (125 mV dec<sup>-1</sup>). The electrochemical active surface area (EASA) normalized linear sweep voltammetry (LSV) curve exhibited outstanding intrinsic activity of GC-Co<sub>2</sub>Ni<sub>1</sub>CP, which required 285 mV to attain 10 mA cm<sup>-2</sup>. At 1.54 V, the estimated turnover frequency (TOF) of GC-Co<sub>2</sub>Ni<sub>1</sub>CP/GC (0.017337 s<sup>-1</sup>) was found to be 3-fold higher than that of IrO<sub>2</sub> (0.0014 s<sup>-1</sup>). Furthermore, the GC-Co<sub>2</sub>Ni<sub>1</sub>CP/NF consumed a very low overpotential (281 mV) with a small Tafel slope of 121 mV dec<sup>-1</sup>. The ultrastability of GC-Co<sub>2</sub>Ni<sub>1</sub>CP for industrial application was confirmed by durability at 10 and 100 mA cm<sup>-2</sup> for the OER (GC/NF-8 h, 2.0%/100 h, 2.2%) and overall water splitting (100 h, 3.8%), which implies that GC-Co<sub>2</sub>Ni<sub>1</sub>CP had adequate kinetics to address the elevated rates of water oxidation. The effect of pH and addition of tetramethylammonium cation (TMA<sup>+</sup>) reveal that GC-Co<sub>2</sub>Ni<sub>1</sub>CP follows the lattice oxygen mechanism (LOM). The solar-powered water electrolysis at 1.55 V supports the efficacy of GC-Co<sub>2</sub>Ni<sub>1</sub>CP in the solar-to-hydrogen conversion. The environmental impact studies and solar-driven water electrolysis proved that GC-CoNiCP has excellent greenness and efficiency, respectively.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02586","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical water splitting required efficient electrocatalysts to produce clean hydrogen fuel. Here, we adopted greenway coprecipitation (GC) method to synthesize conducting polymer (CP) nanotunnel network affixed with luminal-abluminal CoNi hydroxides (GC-CoNiCP), namely, GC-Co1Ni2CP, GC-Co1.5Ni1.5CP, and GC-Co2Ni1CP. The active catalyst, GC-Co2Ni1CP/GC, has low oxygen evolution reaction (OER) overpotential (307 mV) and a smaller Tafel slope (47 mV dec-1) than IrO2 (125 mV dec-1). The electrochemical active surface area (EASA) normalized linear sweep voltammetry (LSV) curve exhibited outstanding intrinsic activity of GC-Co2Ni1CP, which required 285 mV to attain 10 mA cm-2. At 1.54 V, the estimated turnover frequency (TOF) of GC-Co2Ni1CP/GC (0.017337 s-1) was found to be 3-fold higher than that of IrO2 (0.0014 s-1). Furthermore, the GC-Co2Ni1CP/NF consumed a very low overpotential (281 mV) with a small Tafel slope of 121 mV dec-1. The ultrastability of GC-Co2Ni1CP for industrial application was confirmed by durability at 10 and 100 mA cm-2 for the OER (GC/NF-8 h, 2.0%/100 h, 2.2%) and overall water splitting (100 h, 3.8%), which implies that GC-Co2Ni1CP had adequate kinetics to address the elevated rates of water oxidation. The effect of pH and addition of tetramethylammonium cation (TMA+) reveal that GC-Co2Ni1CP follows the lattice oxygen mechanism (LOM). The solar-powered water electrolysis at 1.55 V supports the efficacy of GC-Co2Ni1CP in the solar-to-hydrogen conversion. The environmental impact studies and solar-driven water electrolysis proved that GC-CoNiCP has excellent greenness and efficiency, respectively.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).