{"title":"Mechanism of the KIAA1429/KLF1/PD-L1 Axis in Regulating Immune Escape in Non-small Cell Lung Cancer.","authors":"Rui Geng, Mingmin Ren, Yuhui Ma, Wen Su","doi":"10.1007/s12013-024-01592-3","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC), accounting for approximately 80% of lung cancer cases, remains the leading cause of cancer-related mortality. Immune evasion is a critical challenge in NSCLC, contributing to poor treatment outcomes. This study investigates the role of KIAA1429 in immune evasion, aiming to identify novel therapeutic targets and provide a theoretical basis for NSCLC treatment. NSCLC cell lines were cultured to assess the expression of KIAA1429, KLF transcription factor (KLF1), and programmed cell death ligand 1 (PD-L1). Co-culture experiments were conducted with peripheral blood mononuclear cells (PBMCs) to evaluate cytotoxicity, CD8<sup>+</sup>T cell proportions, and levels of interferon-gamma (IFN-γ)/interleukin (IL)-10/IL-2. Additionally, N6-methyladenosine (m6A) modification in NSCLC cells, m6A enrichment on KLF1, and KLF1 mRNA stability were analyzed. Results showed increased expression of KIAA1429 and KLF1 in NSCLC cells. Knockdown of KIAA1429 inhibited NSCLC cell proliferation, enhanced PBMC cytotoxicity and CD8<sup>+</sup>T cell activation, increased IFN-γ and IL-2 levels, and decreased IL-10 levels. Mechanistically, KIAA1429 stabilized KLF1 mRNA level through m6A modification, promoting both KLF1 and PD-L1 expression. Overexpression of KLF1 or PD-L1 reversed the immune-modulating effects of KIAA1429 knockdown. In conclusion, KIAA1429 facilitates immune evasion in NSCLC by stabilizing KLF1 mRNA and upregulating PD-L1 expression.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01592-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-small cell lung cancer (NSCLC), accounting for approximately 80% of lung cancer cases, remains the leading cause of cancer-related mortality. Immune evasion is a critical challenge in NSCLC, contributing to poor treatment outcomes. This study investigates the role of KIAA1429 in immune evasion, aiming to identify novel therapeutic targets and provide a theoretical basis for NSCLC treatment. NSCLC cell lines were cultured to assess the expression of KIAA1429, KLF transcription factor (KLF1), and programmed cell death ligand 1 (PD-L1). Co-culture experiments were conducted with peripheral blood mononuclear cells (PBMCs) to evaluate cytotoxicity, CD8+T cell proportions, and levels of interferon-gamma (IFN-γ)/interleukin (IL)-10/IL-2. Additionally, N6-methyladenosine (m6A) modification in NSCLC cells, m6A enrichment on KLF1, and KLF1 mRNA stability were analyzed. Results showed increased expression of KIAA1429 and KLF1 in NSCLC cells. Knockdown of KIAA1429 inhibited NSCLC cell proliferation, enhanced PBMC cytotoxicity and CD8+T cell activation, increased IFN-γ and IL-2 levels, and decreased IL-10 levels. Mechanistically, KIAA1429 stabilized KLF1 mRNA level through m6A modification, promoting both KLF1 and PD-L1 expression. Overexpression of KLF1 or PD-L1 reversed the immune-modulating effects of KIAA1429 knockdown. In conclusion, KIAA1429 facilitates immune evasion in NSCLC by stabilizing KLF1 mRNA and upregulating PD-L1 expression.
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.