Adrián Luque, Clara Blanes-Mira, Lara Caballero, Purificación Andrea Martínez-Melgarejo, Miriam Nicolás-Albujer, Francisco Pérez-Alfocea, Gregorio Fernández-Ballester, José Manuel Pérez-Pérez
{"title":"Identification of novel inhibitors of plant GH3 IAA-amido synthetases through molecular docking studies.","authors":"Adrián Luque, Clara Blanes-Mira, Lara Caballero, Purificación Andrea Martínez-Melgarejo, Miriam Nicolás-Albujer, Francisco Pérez-Alfocea, Gregorio Fernández-Ballester, José Manuel Pérez-Pérez","doi":"10.1111/ppl.14612","DOIUrl":null,"url":null,"abstract":"<p><p>Auxins play a critical role in several plant developmental processes and their endogenous levels are regulated at multiple levels. The enzymes of the GRETCHEN HAGEN 3 (GH3) protein family catalyze the conjugation of amino acids to indoleacetic acid (IAA), the major endogenous auxin. The GH3 proteins are encoded by multiple redundant genes in plant genomes, making it difficult to perform functional genetic studies to understand their role in auxin homeostasis. To address these challenges, we used a chemical approach that exploits the reaction mechanism of GH3 proteins to identify small molecule inhibitors of their activity from a defined chemical library. The study evaluated receptor-ligand complexes based on their binding energy and classified them accordingly. Docking algorithms were used to correct any deviations, resulting in a list of the most important inhibitory compounds for selected GH3 enzymes based on a normalized sum of energy. The study presents atomic details of protein-ligand interactions and quantifies the effect of several of the identified small molecule inhibitors on auxin-mediated root growth processes in Arabidopsis thaliana. The direct effect of these compounds on endogenous auxin levels was measured using appropriate auxin sensors and endogenous hormone measurements. Our study has identified novel compounds of the flavonoid biosynthetic pathway that are effective inhibitors of GH3 enzyme-mediated IAA conjugation. These compounds play a versatile role in hormone-regulated plant development and have potential applications in both basic research and agriculture.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14612","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Auxins play a critical role in several plant developmental processes and their endogenous levels are regulated at multiple levels. The enzymes of the GRETCHEN HAGEN 3 (GH3) protein family catalyze the conjugation of amino acids to indoleacetic acid (IAA), the major endogenous auxin. The GH3 proteins are encoded by multiple redundant genes in plant genomes, making it difficult to perform functional genetic studies to understand their role in auxin homeostasis. To address these challenges, we used a chemical approach that exploits the reaction mechanism of GH3 proteins to identify small molecule inhibitors of their activity from a defined chemical library. The study evaluated receptor-ligand complexes based on their binding energy and classified them accordingly. Docking algorithms were used to correct any deviations, resulting in a list of the most important inhibitory compounds for selected GH3 enzymes based on a normalized sum of energy. The study presents atomic details of protein-ligand interactions and quantifies the effect of several of the identified small molecule inhibitors on auxin-mediated root growth processes in Arabidopsis thaliana. The direct effect of these compounds on endogenous auxin levels was measured using appropriate auxin sensors and endogenous hormone measurements. Our study has identified novel compounds of the flavonoid biosynthetic pathway that are effective inhibitors of GH3 enzyme-mediated IAA conjugation. These compounds play a versatile role in hormone-regulated plant development and have potential applications in both basic research and agriculture.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.