J Bonet, R Weiss, A Galderisi, C Dalla Man, S Caprio, N Santoro
{"title":"Adipose tissue insulin resistance in children and adolescents: linking glucose and free fatty acid metabolism to hepatic injury markers.","authors":"J Bonet, R Weiss, A Galderisi, C Dalla Man, S Caprio, N Santoro","doi":"10.1152/ajpendo.00270.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity is one of the leading causes of the development of insulin resistance, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD) in children. With the progression of insulin resistance, both glucose and free fatty acid (FFA) plasma levels are elevated, leading to cardiometabolic complications such as impaired glucose tolerance (IGT), type 2 diabetes, and liver fat accumulation. In this study, oral minimal models were used to estimate insulin sensitivity indexes (SI and SI<sub>FFA</sub>) in 375 adolescents with obesity. Differences between normal glucose tolerance (NGT) and IGT were assessed by using Mann-Whitney <i>U</i> test, while the relationship between insulin sensitivities and plasma alanine transaminase (ALT) was assessed using Spearman correlation and linear regression model of the log-transformed variables. Also, 48 youths repeated the oral glucose tolerance test and the measurement of liver function test after ∼1.3 yr of follow-up. SI was statistically different between NGT and IGT (<i>P</i> < 10<sup>-6</sup>) and correlated with each other (ρ = 0.7, <i>P</i> < 10<sup>-6</sup>). Lipolysis was completely suppressed after 30 min in NGT, compared with 120 min in IGT. SI and SI<sub>FFA</sub> were both statistically correlated with ALT (ρ = -0.19, <i>P</i> < 10<sup>-3</sup>). Also, the percentages of variation of SI<sub>FFA</sub> and ALT between the first and second visits correlated significantly (ρ = -0.47, <i>P</i> = 0.002). FFA minimal model can be used to estimate adipose tissue lipolysis in youths with obesity. The relationship of SI and SI<sub>FFA</sub> with ALT, along with the progression of the impairment of adipose tissue insulin sensitivity, shows that systemic insulin resistance underlies the relationship of glucose and FFA metabolism with hepatic damage.<b>NEW & NOTEWORTHY</b> In this study, we applied glucose, Cpeptide, and FFA minimal models to assess insulin sensitivities, insulin secretion, and lipolytic flux in NGT and IGT in adolescents with obesity. The results show that glucose and adipose tissue insulin sensitivities are strongly correlated with each other and with ALT plasma level. The longitudinal results show that changes in FFA insulin sensitivity are inversely associated with changes of beta cell secretion and with biomarkers of metabolic dysfunction-associated steatohepatitis.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E723-E728"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00270.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is one of the leading causes of the development of insulin resistance, diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD) in children. With the progression of insulin resistance, both glucose and free fatty acid (FFA) plasma levels are elevated, leading to cardiometabolic complications such as impaired glucose tolerance (IGT), type 2 diabetes, and liver fat accumulation. In this study, oral minimal models were used to estimate insulin sensitivity indexes (SI and SIFFA) in 375 adolescents with obesity. Differences between normal glucose tolerance (NGT) and IGT were assessed by using Mann-Whitney U test, while the relationship between insulin sensitivities and plasma alanine transaminase (ALT) was assessed using Spearman correlation and linear regression model of the log-transformed variables. Also, 48 youths repeated the oral glucose tolerance test and the measurement of liver function test after ∼1.3 yr of follow-up. SI was statistically different between NGT and IGT (P < 10-6) and correlated with each other (ρ = 0.7, P < 10-6). Lipolysis was completely suppressed after 30 min in NGT, compared with 120 min in IGT. SI and SIFFA were both statistically correlated with ALT (ρ = -0.19, P < 10-3). Also, the percentages of variation of SIFFA and ALT between the first and second visits correlated significantly (ρ = -0.47, P = 0.002). FFA minimal model can be used to estimate adipose tissue lipolysis in youths with obesity. The relationship of SI and SIFFA with ALT, along with the progression of the impairment of adipose tissue insulin sensitivity, shows that systemic insulin resistance underlies the relationship of glucose and FFA metabolism with hepatic damage.NEW & NOTEWORTHY In this study, we applied glucose, Cpeptide, and FFA minimal models to assess insulin sensitivities, insulin secretion, and lipolytic flux in NGT and IGT in adolescents with obesity. The results show that glucose and adipose tissue insulin sensitivities are strongly correlated with each other and with ALT plasma level. The longitudinal results show that changes in FFA insulin sensitivity are inversely associated with changes of beta cell secretion and with biomarkers of metabolic dysfunction-associated steatohepatitis.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.