Baylea N Davenport, Alyssa Williams, Timothy Rh Regnault, Helen N Jones, Rebecca L Wilson
{"title":"Placenta <i>hIGF1</i> nanoparticle treatment in guinea pigs mitigates FGR-associated fetal sex dependent effects on liver metabolism-related signaling pathways.","authors":"Baylea N Davenport, Alyssa Williams, Timothy Rh Regnault, Helen N Jones, Rebecca L Wilson","doi":"10.1152/ajpendo.00440.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal development in an adverse in utero environment significantly increases the risk of developing metabolic diseases in later life, including dyslipidemia, non-alcoholic fatty liver diseases and diabetes. The aim of this study was to determine whether improving the in utero fetal growth environment with a placental nanoparticle gene therapy would ameliorate fetal growth restriction (FGR)-associated dysregulation of fetal hepatic lipid and glucose metabolism-related signaling pathways. Using the guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, placenta efficiency and fetal weight was significantly improved following three administrations of a non-viral polymer-based nanoparticle gene therapy to the placenta from mid-pregnancy (gestational day 35) until gestational day 52. The nanoparticle gene therapy transiently increased expression of <i>human insulin-like growth factor 1 (hIGF1)</i> in placenta trophoblast. Fetal liver tissue was collected near-term at gestational day 60. Fetal sex specific differences in liver gene and protein expression of pro-fibrosis and glucose metabolism-related factors were demonstrated in sham-treated FGR fetuses but not observed in FGR fetuses who received placental <i>hIGF1</i> nanoparticle treatment. Increased plasma bilirubin, an indirect measure of hepatic activity, was also demonstrated with placental <i>hIGF1</i> nanoparticle treatment. We speculate that the changes in liver gene and protein expression and increased liver activity that result in similar expression profiles to appropriately growing Control fetuses might confer protection against increased susceptibility to aberrant liver physiology in later-life. Overall, this work opens avenues for future research assessing the translational prospect of mitigating FGR-induced metabolic derangements.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00440.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Fetal development in an adverse in utero environment significantly increases the risk of developing metabolic diseases in later life, including dyslipidemia, non-alcoholic fatty liver diseases and diabetes. The aim of this study was to determine whether improving the in utero fetal growth environment with a placental nanoparticle gene therapy would ameliorate fetal growth restriction (FGR)-associated dysregulation of fetal hepatic lipid and glucose metabolism-related signaling pathways. Using the guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, placenta efficiency and fetal weight was significantly improved following three administrations of a non-viral polymer-based nanoparticle gene therapy to the placenta from mid-pregnancy (gestational day 35) until gestational day 52. The nanoparticle gene therapy transiently increased expression of human insulin-like growth factor 1 (hIGF1) in placenta trophoblast. Fetal liver tissue was collected near-term at gestational day 60. Fetal sex specific differences in liver gene and protein expression of pro-fibrosis and glucose metabolism-related factors were demonstrated in sham-treated FGR fetuses but not observed in FGR fetuses who received placental hIGF1 nanoparticle treatment. Increased plasma bilirubin, an indirect measure of hepatic activity, was also demonstrated with placental hIGF1 nanoparticle treatment. We speculate that the changes in liver gene and protein expression and increased liver activity that result in similar expression profiles to appropriately growing Control fetuses might confer protection against increased susceptibility to aberrant liver physiology in later-life. Overall, this work opens avenues for future research assessing the translational prospect of mitigating FGR-induced metabolic derangements.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.