{"title":"Mass transfer kinetics of ultrasonic- and vacuum-ultrasonic-assisted static brine of chicken breast (Pectoralis major).","authors":"Jiaqi Shao, Haozhen Zhang, Jingjie Wang, Xinglian Xu, Xue Zhao","doi":"10.1111/1750-3841.17495","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to investigate the effect of different ultrasound treatment (UT) conditions (Control, UT-150, UT-300, UT-450, Vacuum-UT-150, Vacuum-UT-300, Vacuum-UT-450) on the brining kinetics and meat quality of chicken breast. The results showed that vacuum-ultrasonic-assisted treatment greatly accelerated the transfer of moisture and NaCl, and the highest yield was obtained by ultrasonic power of 450 W. The mass transfer kinetics (k<sub>1</sub> and k<sub>2</sub>) were significantly related to vacuum pretreatment and ultrasonic power. The values of k<sub>1</sub> for total and moisture weight changes decreased with the increase of ultrasonic power, whereas the values of k<sub>2</sub> increased with vacuum pretreatment. The application of ultrasound treatment with vacuum improved the NaCl effective diffusion coefficients (D<sub>e</sub>) from 1.189 × 10<sup>-9</sup> to 1.308-1.449 × 10<sup>-9</sup> m<sup>2</sup>/s, and the highest De was found with Vacuum-UT-450. The treatment of ultrasound and vacuum can reduce shear force and enhance the water-holding capacity (WHC). According to the analysis of water distribution, vacuum and ultrasound could decrease the T<sub>23</sub> values, indicating that the mobility of water decreased. The result of microscopic observation further supported that the disruption of myofibrils was related to the tenderness and WHC changes, which was caused by vacuum and ultrasound treatment. Thus, Vacuum-UT brining could be employed as an emerging technology for improving the efficiency of brining and meat quality of other meat. PRACTICAL APPLICATION: Vacuum-ultrasonic-assisted static brine is an effective and feasible treatment to replace tumbling treatment for maintaining the integrity of the muscle bundles and accelerating the brining rate.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17495","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to investigate the effect of different ultrasound treatment (UT) conditions (Control, UT-150, UT-300, UT-450, Vacuum-UT-150, Vacuum-UT-300, Vacuum-UT-450) on the brining kinetics and meat quality of chicken breast. The results showed that vacuum-ultrasonic-assisted treatment greatly accelerated the transfer of moisture and NaCl, and the highest yield was obtained by ultrasonic power of 450 W. The mass transfer kinetics (k1 and k2) were significantly related to vacuum pretreatment and ultrasonic power. The values of k1 for total and moisture weight changes decreased with the increase of ultrasonic power, whereas the values of k2 increased with vacuum pretreatment. The application of ultrasound treatment with vacuum improved the NaCl effective diffusion coefficients (De) from 1.189 × 10-9 to 1.308-1.449 × 10-9 m2/s, and the highest De was found with Vacuum-UT-450. The treatment of ultrasound and vacuum can reduce shear force and enhance the water-holding capacity (WHC). According to the analysis of water distribution, vacuum and ultrasound could decrease the T23 values, indicating that the mobility of water decreased. The result of microscopic observation further supported that the disruption of myofibrils was related to the tenderness and WHC changes, which was caused by vacuum and ultrasound treatment. Thus, Vacuum-UT brining could be employed as an emerging technology for improving the efficiency of brining and meat quality of other meat. PRACTICAL APPLICATION: Vacuum-ultrasonic-assisted static brine is an effective and feasible treatment to replace tumbling treatment for maintaining the integrity of the muscle bundles and accelerating the brining rate.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.