Elizabeth Temeroli, Sarah A Jelbert, Megan L Lambert
{"title":"Do kea parrots infer the weight of objects from their movement in a breeze?","authors":"Elizabeth Temeroli, Sarah A Jelbert, Megan L Lambert","doi":"10.1098/rsbl.2024.0405","DOIUrl":null,"url":null,"abstract":"<p><p>Weight, though it cannot be seen directly, pervades nearly every aspect of an animal's life. However, the extent to which non-human animals reason about the property of weight remains poorly understood. Recent evidence highlights birds as a promising group for testing this ability: for example, New Caledonian crows can infer the weight of objects after observing their movements in a breeze. Here, we tested for similar weight inference abilities in kea (<i>Nestor notabilis</i>), a parrot species known for its sophisticated problem-solving skills. Subjects were trained to exchange objects of a target weight (light or heavy) for a food reward. They were then allowed to observe pairs of novel objects (one light and one heavy) hung in front of an electric fan in both an experimental condition (fan on, light object moving) and a control condition (fan off, both objects motionless). The birds were subsequently presented with test trials in which they could use the information from the demonstration to select an object of their target weight. We found that, unlike New Caledonian crows, kea did not perform significantly better on trials in which they observed the objects' movements and discussed our findings within the context of the kea's highly explorative nature.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsbl.2024.0405","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Weight, though it cannot be seen directly, pervades nearly every aspect of an animal's life. However, the extent to which non-human animals reason about the property of weight remains poorly understood. Recent evidence highlights birds as a promising group for testing this ability: for example, New Caledonian crows can infer the weight of objects after observing their movements in a breeze. Here, we tested for similar weight inference abilities in kea (Nestor notabilis), a parrot species known for its sophisticated problem-solving skills. Subjects were trained to exchange objects of a target weight (light or heavy) for a food reward. They were then allowed to observe pairs of novel objects (one light and one heavy) hung in front of an electric fan in both an experimental condition (fan on, light object moving) and a control condition (fan off, both objects motionless). The birds were subsequently presented with test trials in which they could use the information from the demonstration to select an object of their target weight. We found that, unlike New Caledonian crows, kea did not perform significantly better on trials in which they observed the objects' movements and discussed our findings within the context of the kea's highly explorative nature.
期刊介绍:
Previously a supplement to Proceedings B, and launched as an independent journal in 2005, Biology Letters is a primarily online, peer-reviewed journal that publishes short, high-quality articles, reviews and opinion pieces from across the biological sciences. The scope of Biology Letters is vast - publishing high-quality research in any area of the biological sciences. However, we have particular strengths in the biology, evolution and ecology of whole organisms. We also publish in other areas of biology, such as molecular ecology and evolution, environmental science, and phylogenetics.