Pub Date : 2024-11-01Epub Date: 2024-11-06DOI: 10.1098/rsbl.2024.0287
Pablo Burraco, Caitlin Gabor, Amanda Bryant, Vanessa Gardette, Thierry Lengagne, Jean Marc Bonzom, Germán Orizaola
The accident that occurred at the Chornobyl nuclear power plant (Ukraine, 1986) contaminated a large extension of territory after the deposition of radioactive material. It is still under debate whether the chronic exposure to the radiation levels currently present in the area has long-term effects on organisms, such as decreases in longevity. Here, we investigate whether current levels of radiation in Chornobyl negatively impact the age of the Eastern tree frog Hyla orientalis. We also explore whether radiation induces changes in an ageing marker, telomere length or the stress hormone corticosterone. We found no effect of total individual absorbed radiation (including both external and internal exposure) on frog age (n = 197 individuals sampled in 3 consecutive years). We also did not find any relationship between individual absorbed radiation and telomere length, nor between individual absorbed radiation and corticosterone levels. Our results suggest that radiation levels currently experienced by Chornobyl tree frogs may not be high enough to cause severe chronic damage to semi-aquatic vertebrates such as this species. This is the first study addressing age and stress hormones in Chornobyl wildlife, and thus future research will confirm if these results can be extended to other taxa.
{"title":"Ionizing radiation has negligible effects on the age, telomere length and corticosterone levels of Chornobyl tree frogs.","authors":"Pablo Burraco, Caitlin Gabor, Amanda Bryant, Vanessa Gardette, Thierry Lengagne, Jean Marc Bonzom, Germán Orizaola","doi":"10.1098/rsbl.2024.0287","DOIUrl":"10.1098/rsbl.2024.0287","url":null,"abstract":"<p><p>The accident that occurred at the Chornobyl nuclear power plant (Ukraine, 1986) contaminated a large extension of territory after the deposition of radioactive material. It is still under debate whether the chronic exposure to the radiation levels currently present in the area has long-term effects on organisms, such as decreases in longevity. Here, we investigate whether current levels of radiation in Chornobyl negatively impact the age of the Eastern tree frog <i>Hyla orientalis</i>. We also explore whether radiation induces changes in an ageing marker, telomere length or the stress hormone corticosterone. We found no effect of total individual absorbed radiation (including both external and internal exposure) on frog age (<i>n</i> = 197 individuals sampled in 3 consecutive years). We also did not find any relationship between individual absorbed radiation and telomere length, nor between individual absorbed radiation and corticosterone levels. Our results suggest that radiation levels currently experienced by Chornobyl tree frogs may not be high enough to cause severe chronic damage to semi-aquatic vertebrates such as this species. This is the first study addressing age and stress hormones in Chornobyl wildlife, and thus future research will confirm if these results can be extended to other taxa.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537762/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-06DOI: 10.1098/rsbl.2024.0319
Stephan N van Dijk, Daniel E Sadler, Phillip C Watts, Silva Uusi-Heikkilä
Overfishing is one of the greatest threats to fish populations. Size-selective harvesting favours faster juvenile growth, younger maturation, small adult body size and low reproductive output. Such changes might be slow to recover and ultimately threaten population fitness and survival. To study the recovery potential of exploited experimental populations, we compared life-history traits in three differently size-selected experimental lines (large-selected, small-selected and random-selected) after five generations of harvesting and 10 subsequent generations of recovery (i.e. cessation of harvesting). We show that after a recovery period twice as long as the harvesting period, the differences in adult body size among the selection lines have eroded. While there was still a significant body size difference among the selection lines, this did not translate to differences in reproductive success. Although size-selective harvesting causes phenotypic changes in exploited fish populations, we show that such changes are reversible if the recovery period is long enough.
{"title":"Fisheries-induced life-history changes recover in experimentally harvested fish populations.","authors":"Stephan N van Dijk, Daniel E Sadler, Phillip C Watts, Silva Uusi-Heikkilä","doi":"10.1098/rsbl.2024.0319","DOIUrl":"10.1098/rsbl.2024.0319","url":null,"abstract":"<p><p>Overfishing is one of the greatest threats to fish populations. Size-selective harvesting favours faster juvenile growth, younger maturation, small adult body size and low reproductive output. Such changes might be slow to recover and ultimately threaten population fitness and survival. To study the recovery potential of exploited experimental populations, we compared life-history traits in three differently size-selected experimental lines (large-selected, small-selected and random-selected) after five generations of harvesting and 10 subsequent generations of recovery (i.e. cessation of harvesting). We show that after a recovery period twice as long as the harvesting period, the differences in adult body size among the selection lines have eroded. While there was still a significant body size difference among the selection lines, this did not translate to differences in reproductive success. Although size-selective harvesting causes phenotypic changes in exploited fish populations, we show that such changes are reversible if the recovery period is long enough.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-06DOI: 10.1098/rsbl.2024.0453
Giulia S Rossi, Kenneth C Welch
In most mammals, running is fuelled by oxidization of endogenous carbohydrates and lipids while amino acids contribute little (< 5-10%). Common vampire bats (Desmodus rotundus), however, specialize on a unique, protein-rich blood diet. Therefore, we hypothesized that (i) vampire bats would rapidly begin utilizing dietary amino acids to support running metabolism, and (ii) that relative reliance on essential and non-essential amino acids would be similar. We fed bats cow's blood enriched either with isotopically labelled glycine (non-essential amino acid) or leucine (essential amino acid). Bats were exercised at speeds of 10, 20 and 30 m min-1 on a respirometry treadmill, allowing us to assess metabolic rate (i.e. O2 consumption and CO2 production) and track the oxidation of labelled amino acids in exhaled CO2. Vampire bats oxidized amino acids as their primary fuel as indicated by a respiratory exchange ratio (RER = ratio of CO2 production to O2 consumption rates) of approximately 0.8-0.9 at all speeds, with the labelled meal accounting for as much as 60% of oxidized fuels at peak usage. Similar oxidation rates indicated bats did not discriminate between essential and non-essential amino acid use. These findings reiterate how strongly metabolism can be shaped by a specialized diet.
{"title":"Vampire bats rapidly fuel running with essential or non-essential amino acids from a blood meal.","authors":"Giulia S Rossi, Kenneth C Welch","doi":"10.1098/rsbl.2024.0453","DOIUrl":"10.1098/rsbl.2024.0453","url":null,"abstract":"<p><p>In most mammals, running is fuelled by oxidization of endogenous carbohydrates and lipids while amino acids contribute little (< 5-10%). Common vampire bats (<i>Desmodus rotundus</i>), however, specialize on a unique, protein-rich blood diet. Therefore, we hypothesized that (i) vampire bats would rapidly begin utilizing dietary amino acids to support running metabolism, and (ii) that relative reliance on essential and non-essential amino acids would be similar. We fed bats cow's blood enriched either with isotopically labelled glycine (non-essential amino acid) or leucine (essential amino acid). Bats were exercised at speeds of 10, 20 and 30 m min<sup>-1</sup> on a respirometry treadmill, allowing us to assess metabolic rate (i.e. O<sub>2</sub> consumption and CO<sub>2</sub> production) and track the oxidation of labelled amino acids in exhaled CO<sub>2</sub>. Vampire bats oxidized amino acids as their primary fuel as indicated by a respiratory exchange ratio (RER = ratio of CO<sub>2</sub> production to O<sub>2</sub> consumption rates) of approximately 0.8-0.9 at all speeds, with the labelled meal accounting for as much as 60% of oxidized fuels at peak usage. Similar oxidation rates indicated bats did not discriminate between essential and non-essential amino acid use. These findings reiterate how strongly metabolism can be shaped by a specialized diet.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-01Epub Date: 2024-11-06DOI: 10.1098/rsbl.2024.0405
Elizabeth Temeroli, Sarah A Jelbert, Megan L Lambert
Weight, though it cannot be seen directly, pervades nearly every aspect of an animal's life. However, the extent to which non-human animals reason about the property of weight remains poorly understood. Recent evidence highlights birds as a promising group for testing this ability: for example, New Caledonian crows can infer the weight of objects after observing their movements in a breeze. Here, we tested for similar weight inference abilities in kea (Nestor notabilis), a parrot species known for its sophisticated problem-solving skills. Subjects were trained to exchange objects of a target weight (light or heavy) for a food reward. They were then allowed to observe pairs of novel objects (one light and one heavy) hung in front of an electric fan in both an experimental condition (fan on, light object moving) and a control condition (fan off, both objects motionless). The birds were subsequently presented with test trials in which they could use the information from the demonstration to select an object of their target weight. We found that, unlike New Caledonian crows, kea did not perform significantly better on trials in which they observed the objects' movements and discussed our findings within the context of the kea's highly explorative nature.
{"title":"Do kea parrots infer the weight of objects from their movement in a breeze?","authors":"Elizabeth Temeroli, Sarah A Jelbert, Megan L Lambert","doi":"10.1098/rsbl.2024.0405","DOIUrl":"10.1098/rsbl.2024.0405","url":null,"abstract":"<p><p>Weight, though it cannot be seen directly, pervades nearly every aspect of an animal's life. However, the extent to which non-human animals reason about the property of weight remains poorly understood. Recent evidence highlights birds as a promising group for testing this ability: for example, New Caledonian crows can infer the weight of objects after observing their movements in a breeze. Here, we tested for similar weight inference abilities in kea (<i>Nestor notabilis</i>), a parrot species known for its sophisticated problem-solving skills. Subjects were trained to exchange objects of a target weight (light or heavy) for a food reward. They were then allowed to observe pairs of novel objects (one light and one heavy) hung in front of an electric fan in both an experimental condition (fan on, light object moving) and a control condition (fan off, both objects motionless). The birds were subsequently presented with test trials in which they could use the information from the demonstration to select an object of their target weight. We found that, unlike New Caledonian crows, kea did not perform significantly better on trials in which they observed the objects' movements and discussed our findings within the context of the kea's highly explorative nature.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11537761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
One crucial interaction for the health of fish communities in coral reefs is performed by cleaner fish by removing ectoparasites from the body of other fish, so-called clients. Studying the underlying mechanisms of this behaviour is essential to understanding how species react to social stimuli and defining the drivers of mutualistic social behaviour. Here, we pinpoint the neural molecular mechanisms in the cleaning behaviour of Labroides dimidiatus in the wild through an in situ interaction experiment at a coral reef in New Caledonia. Five cleaners and clients (Abudefduf saxatilis) were placed into underwater aquaria to interact, while five were not presented with a client. The brain transcriptomes revealed 233 differentially expressed genes in cleaners that were interacting with a client. Among these genes, grin2d, npy, slc6a3 and immediate early genes (IEGs; fosb and fosl1) were related to learning and memory, glutamate and dopamine pathways, which confirm molecular pathways observed in laboratory studies. However, a new potential mechanism was found with npy (neuropeptide Y) as a driver of feeding behaviour. These results show the role of neurotransmitters and IEGs in mutualistic social behaviour, unveiling the mechanism behind the feeding stimulus that leads the cleaner fish to establish mutualistic interactions in coral reefs.
{"title":"Neural mechanisms of mutualistic fish cleaning behaviour: a study in the wild.","authors":"Daniele Romeo, Sandra Ramirez-Calero, Timothy Ravasi, Riccardo Rodolfo-Metalpa, Celia Schunter","doi":"10.1098/rsbl.2024.0339","DOIUrl":"https://doi.org/10.1098/rsbl.2024.0339","url":null,"abstract":"<p><p>One crucial interaction for the health of fish communities in coral reefs is performed by cleaner fish by removing ectoparasites from the body of other fish, so-called clients. Studying the underlying mechanisms of this behaviour is essential to understanding how species react to social stimuli and defining the drivers of mutualistic social behaviour. Here, we pinpoint the neural molecular mechanisms in the cleaning behaviour of <i>Labroides dimidiatus</i> in the wild through an <i>in situ</i> interaction experiment at a coral reef in New Caledonia. Five cleaners and clients (<i>Abudefduf saxatilis</i>) were placed into underwater aquaria to interact, while five were not presented with a client. The brain transcriptomes revealed 233 differentially expressed genes in cleaners that were interacting with a client. Among these genes, <i>grin2d</i>, <i>npy</i>, <i>slc6a3</i> and immediate early genes (IEGs; <i>fosb</i> and <i>fosl1</i>) were related to learning and memory, glutamate and dopamine pathways, which confirm molecular pathways observed in laboratory studies. However, a new potential mechanism was found with <i>npy</i> (neuropeptide Y) as a driver of feeding behaviour. These results show the role of neurotransmitters and IEGs in mutualistic social behaviour, unveiling the mechanism behind the feeding stimulus that leads the cleaner fish to establish mutualistic interactions in coral reefs.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479757/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-30DOI: 10.1098/rsbl.2024.0257
Karolina Iwińska, Jan S Boratyński, Aneta Książek, Joanna Błońska, Zbigniew Borowski, Marek Konarzewski
Oxidative stress (OS) and impaired immune function (IF) have been proposed as key physiological costs of reproduction. The relationship between OS and IF remains unresolved, particularly in long-living iteroparous species. We studied physiological markers of maintenance (OS, IF markers) in lactating, post-lactating and non-lactating females of edible dormice-a long-living rodent. We predicted the OS balance and IF to be compromised by lactation, especially in older females expected to face stronger trade-offs between life functions. We found that the age predictor (body size) correlated negatively with white blood cell level (WBC), positively with neutrophils to lymphocytes ratio and had no effect on OS markers. Oxidative damage markers (reactive oxygen metabolites (ROMs); but not antioxidant capacity) and body size-adjusted WBC were the lowest in lactating, higher in post-lactating and the highest in non-lactating females. Body size/age did not affect this correlation suggesting a similar age-independent allocation strategy during reproduction in this species. The path analysis testing the causal relationship between ROMs and WBC revealed that IF is more likely to affect OS than vice versa. Our study indicates the trade-off between crucial life functions during reproduction and suggests that immunosuppression reduces the risk of OS; therefore, mitigating oxidative costs of reproduction.
氧化应激(OS)和免疫功能受损(IF)被认为是繁殖的主要生理代价。OS和IF之间的关系仍未解决,尤其是在长寿的雌雄异体物种中。我们研究了哺乳期、哺乳期后和非哺乳期雌性可食用巢鼠--一种长寿啮齿类动物--的维持生理指标(OS、IF指标)。我们预测泌乳会影响OS平衡和IF,尤其是年龄较大的雌性,因为它们会面临更激烈的生命功能权衡。我们发现,年龄预测因子(体型)与白细胞水平(WBC)呈负相关,与中性粒细胞和淋巴细胞的比率呈正相关,而对OS指标没有影响。氧化损伤指标(活性氧代谢物(ROMs);但不是抗氧化能力)和体型调整后的白细胞在哺乳期雌性中最低,在哺乳期后雌性中较高,而在非哺乳期雌性中最高。体型/年龄对这种相关性没有影响,这表明该物种在繁殖期间有类似的与年龄无关的分配策略。检验 ROMs 和 WBC 之间因果关系的路径分析显示,IF 更有可能影响 OS,反之亦然。我们的研究表明了繁殖期间关键生命功能之间的权衡,并表明免疫抑制可降低 OS 的风险,从而减轻繁殖的氧化成本。
{"title":"Reproduction results in parallel changes of oxidative stress and immunocompetence in a wild long-living mammal-edible dormouse <i>Glis glis</i>.","authors":"Karolina Iwińska, Jan S Boratyński, Aneta Książek, Joanna Błońska, Zbigniew Borowski, Marek Konarzewski","doi":"10.1098/rsbl.2024.0257","DOIUrl":"10.1098/rsbl.2024.0257","url":null,"abstract":"<p><p>Oxidative stress (OS) and impaired immune function (IF) have been proposed as key physiological costs of reproduction. The relationship between OS and IF remains unresolved, particularly in long-living iteroparous species. We studied physiological markers of maintenance (OS, IF markers) in lactating, post-lactating and non-lactating females of edible dormice-a long-living rodent. We predicted the OS balance and IF to be compromised by lactation, especially in older females expected to face stronger trade-offs between life functions. We found that the age predictor (body size) correlated negatively with white blood cell level (WBC), positively with neutrophils to lymphocytes ratio and had no effect on OS markers. Oxidative damage markers (reactive oxygen metabolites (ROMs); but not antioxidant capacity) and body size-adjusted WBC were the lowest in lactating, higher in post-lactating and the highest in non-lactating females. Body size/age did not affect this correlation suggesting a similar age-independent allocation strategy during reproduction in this species. The path analysis testing the causal relationship between ROMs and WBC revealed that IF is more likely to affect OS than <i>vice versa</i>. Our study indicates the trade-off between crucial life functions during reproduction and suggests that immunosuppression reduces the risk of OS; therefore, mitigating oxidative costs of reproduction.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In eukaryotes, gamete size difference between the two sexes (anisogamy) evolved from gametes of equal size in both mating types (isogamy). The gamete dynamics (GD) model for anisogamy evolution combines gamete limitation and competition and predicts that if gametes of both mating types can develop parthenogenetically (i.e. without fusing with the opposite mating type), large isogamy can evolve under gamete-limited conditions. Ulvophycean marine green algae that have been claimed to exhibit various gametic systems from isogamy to anisogamy are important models for testing such theories. However, in most previous papers, whether a species is isogamous or anisogamous has not been examined statistically. Caution is necessary regarding claims of slight anisogamy because of gamete size variation. We reveal (i) that the gametic system of Struvea okamurae is large isogamy using a generalized linear mixed model, which accounted for the variation of gamete size among individual gametophytes, and (ii) that gametes of this alga can actually develop parthenogenetically, contrary to a previous report. Its habitat environments and protracted duration of gamete release suggest that this alga might experience gamete-limited conditions. Struvea okamurae seems to produce large parthenogenetic isogametes following GD model predictions, as an adaptation to deep waters.
{"title":"An ulvophycean marine green alga produces large parthenogenetic isogametes as predicted by the gamete dynamics model for the evolution of anisogamy.","authors":"Tatsuya Togashi, Kazuei Nomura, Kosei Mochizuki, Geoff A Parker, Yusuke Horinouchi","doi":"10.1098/rsbl.2024.0489","DOIUrl":"10.1098/rsbl.2024.0489","url":null,"abstract":"<p><p>In eukaryotes, gamete size difference between the two sexes (anisogamy) evolved from gametes of equal size in both mating types (isogamy). The gamete dynamics (GD) model for anisogamy evolution combines gamete limitation and competition and predicts that if gametes of both mating types can develop parthenogenetically (i.e. without fusing with the opposite mating type), large isogamy can evolve under gamete-limited conditions. Ulvophycean marine green algae that have been claimed to exhibit various gametic systems from isogamy to anisogamy are important models for testing such theories. However, in most previous papers, whether a species is isogamous or anisogamous has not been examined statistically. Caution is necessary regarding claims of slight anisogamy because of gamete size variation. We reveal (i) that the gametic system of <i>Struvea okamurae</i> is large isogamy using a generalized linear mixed model, which accounted for the variation of gamete size among individual gametophytes, and (ii) that gametes of this alga can actually develop parthenogenetically, contrary to a previous report. Its habitat environments and protracted duration of gamete release suggest that this alga might experience gamete-limited conditions. <i>Struvea okamurae</i> seems to produce large parthenogenetic isogametes following GD model predictions, as an adaptation to deep waters.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495676/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-23DOI: 10.1098/rsbl.2024.0346
Janis M Wolf, Gerald Kerth
Lactation is the most energetically demanding time in the life of female mammals. To maximize lifetime reproductive success, females of long-lived species, such as bats, face a trade-off between investing in current and future reproduction. However, it is unclear whether global warming could influence this trade-off through shifts in the energy budget: warmer temperatures may reduce thermoregulatory costs, leaving mothers with more energy available for maternal care or for improving their own body condition (BC), which may increase survival and ensure future reproduction. Here, we investigated whether lactating Bechstein's bats (Myotis bechsteinii) allocate the energy saved in optimally warm roosts into their own BC. We analysed a 14-year dataset on the individual BC of 237 females marked with radio-frequency identification tags from four wild maternity colonies. In two of the colonies, the temperature in the roosts, in which the females raised their offspring, was artificially kept in the bats' thermoneutral zone to reduce their thermoregulation costs. We found that BC shortly after the lactation period did not differ between mothers from heated and non-heated colonies. Our results suggest that mothers do not invest the energy saved in warmer roosts in their own BC, consistent with an increased investment in maternal care.
哺乳期是雌性哺乳动物一生中能量消耗最大的时期。为了最大限度地提高一生的繁殖成功率,蝙蝠等长寿物种的雌性面临着在当前和未来的繁殖投资之间进行权衡的问题。然而,目前还不清楚全球变暖是否会通过改变能量预算来影响这种权衡:气温升高可能会降低体温调节成本,使蝙蝠母亲有更多的能量用于母性护理或改善自身的身体状况(BC),从而提高存活率并确保未来的繁殖。在这里,我们研究了正在哺乳的贝希斯坦蝙蝠(Myotis bechsteinii)是否将在最佳温暖栖息地节省下来的能量用于改善自身的身体状况。我们分析了四个野生产仔群落中 237 只带有射频识别标签的雌性蝙蝠 14 年的个体 BC 数据集。在其中两个繁殖地,雌性蝙蝠抚养后代的栖息地温度被人为地保持在蝙蝠的中温区,以降低它们的体温调节成本。我们发现,在哺乳期结束后不久,有暖气和无暖气蝙蝠群的母蝙蝠的BC值并无差异。我们的研究结果表明,母蝙蝠不会把在较温暖的栖息地节省下来的能量投入到自己的体温调节中,这与增加母性照料的投资是一致的。
{"title":"Optimally warm roost temperatures during lactation do not improve body condition in a long-lived bat.","authors":"Janis M Wolf, Gerald Kerth","doi":"10.1098/rsbl.2024.0346","DOIUrl":"https://doi.org/10.1098/rsbl.2024.0346","url":null,"abstract":"<p><p>Lactation is the most energetically demanding time in the life of female mammals. To maximize lifetime reproductive success, females of long-lived species, such as bats, face a trade-off between investing in current and future reproduction. However, it is unclear whether global warming could influence this trade-off through shifts in the energy budget: warmer temperatures may reduce thermoregulatory costs, leaving mothers with more energy available for maternal care or for improving their own body condition (BC), which may increase survival and ensure future reproduction. Here, we investigated whether lactating Bechstein's bats (<i>Myotis bechsteinii</i>) allocate the energy saved in optimally warm roosts into their own BC. We analysed a 14-year dataset on the individual BC of 237 females marked with radio-frequency identification tags from four wild maternity colonies. In two of the colonies, the temperature in the roosts, in which the females raised their offspring, was artificially kept in the bats' thermoneutral zone to reduce their thermoregulation costs. We found that BC shortly after the lactation period did not differ between mothers from heated and non-heated colonies. Our results suggest that mothers do not invest the energy saved in warmer roosts in their own BC, consistent with an increased investment in maternal care.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-23DOI: 10.1098/rsbl.2024.0360
Natsuko Rivera-Yoshida, Alejandro V Arzola, Mariana Benítez
Aggregation underlies the collective dynamics of a diversity of organisms, enabling the formation of complex structures and emergent behaviours on interaction with the environment. Cellular aggregation constitutes one of the routes to collective motility and multicellular development. Myxococcus xanthus, a social bacterium, is a valuable model for studying the aggregative path to multicellularity, a major transition in the evolutionary history of life. While the collective developmental behaviour of M. xanthus has been largely studied in high cellular densities, there is a lack of understanding at low-density conditions that can be ecologically relevant. In this work, we study the early stages of emergent collective behaviour of M. xanthus under nutrient-poor and low-density conditions, uncovering the formation of diverse cellular structures with different shapes and sizes, ranging from individual cells to networks comprising thousands of cells. We study their motility patterns and their prevalence along development and discuss their cross-scale role on the population's exploratory dynamics. This work contributes to understanding key, yet largely understudied, aspects in the early stages of multicellular development in myxobacteria, shedding light on the dynamics underlying aggregative processes in this and other taxa and study systems.
{"title":"Unravelling a diversity of cellular structures and aggregation dynamics during the early development of <i>Myxococcus xanthus</i>.","authors":"Natsuko Rivera-Yoshida, Alejandro V Arzola, Mariana Benítez","doi":"10.1098/rsbl.2024.0360","DOIUrl":"https://doi.org/10.1098/rsbl.2024.0360","url":null,"abstract":"<p><p>Aggregation underlies the collective dynamics of a diversity of organisms, enabling the formation of complex structures and emergent behaviours on interaction with the environment. Cellular aggregation constitutes one of the routes to collective motility and multicellular development. <i>Myxococcus xanthus</i>, a social bacterium, is a valuable model for studying the aggregative path to multicellularity, a major transition in the evolutionary history of life. While the collective developmental behaviour of <i>M. xanthus</i> has been largely studied in high cellular densities, there is a lack of understanding at low-density conditions that can be ecologically relevant. In this work, we study the early stages of emergent collective behaviour of <i>M. xanthus</i> under nutrient-poor and low-density conditions, uncovering the formation of diverse cellular structures with different shapes and sizes, ranging from individual cells to networks comprising thousands of cells. We study their motility patterns and their prevalence along development and discuss their cross-scale role on the population's exploratory dynamics. This work contributes to understanding key, yet largely understudied, aspects in the early stages of multicellular development in myxobacteria, shedding light on the dynamics underlying aggregative processes in this and other taxa and study systems.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496945/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142494601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-10-02DOI: 10.1098/rsbl.2024.0295
Jake M Robinson, Amy Annells, Christian Cando-Dumancela, Martin F Breed
Ecosystem restoration interventions often utilize visible elements to restore an ecosystem (e.g. replanting native plant communities and reintroducing lost species). However, using acoustic stimulation to help restore ecosystems and promote plant growth has received little attention. Our study aimed to assess the effect of acoustic stimulation on the growth rate and sporulation of the plant growth-promoting fungus Trichoderma harzianum Rifai, 1969. We played a monotone acoustic stimulus (80 dB sound pressure level (SPL) at a peak frequency of 8 kHz and a bandwidth at -10 dB from the peak of 6819 Hz-parameters determined via review and pilot research) over 5 days to T. harzianum to assess whether acoustic stimulation affected the growth rate and sporulation of this fungus (control samples received only ambient sound stimulation less than 30 dB). We show that the acoustic stimulation treatments resulted in increased fungal biomass and enhanced T. harzianum conidia (spore) activity compared to controls. These results indicate that acoustic stimulation influences plant growth-promoting fungal growth and potentially facilitates their functioning (e.g. stimulating sporulation). The mechanism responsible for this phenomenon may be fungal mechanoreceptor stimulation and/or potentially a piezoelectric effect; however, further research is required to confirm this hypothesis. Our novel study highlights the potential of acoustic stimulation to alter important fungal attributes, which could, with further development, be harnessed to aid ecosystem restoration and sustainable agriculture.
生态系统恢复干预措施通常利用可见元素来恢复生态系统(如重新种植本地植物群落和重新引入失去的物种)。然而,利用声学刺激来帮助恢复生态系统和促进植物生长却很少受到关注。我们的研究旨在评估声刺激对植物生长促进真菌毛霉(Trichoderma harzianum Rifai,1969)生长速度和孢子的影响。我们对夏茨真菌进行了为期 5 天的单音声刺激(80 dB 声压级(SPL),峰值频率为 8 kHz,带宽为-10 dB,峰值为 6819 Hz,参数通过审查和试验研究确定),以评估声刺激是否会影响该真菌的生长速度和孢子产生(对照样本仅接受低于 30 dB 的环境声刺激)。我们发现,与对照组相比,声刺激处理增加了真菌的生物量,并增强了 harzianum 分生孢子(孢子)的活性。这些结果表明,声刺激会影响植物生长促进真菌的生长,并有可能促进其功能的发挥(如刺激孢子的产生)。造成这一现象的机制可能是真菌机械感受器刺激和/或潜在的压电效应;然而,要证实这一假设还需要进一步的研究。我们的新研究强调了声刺激改变真菌重要属性的潜力,随着进一步的发展,这种潜力可被用于帮助生态系统恢复和可持续农业。
{"title":"Sonic restoration: acoustic stimulation enhances plant growth-promoting fungi activity.","authors":"Jake M Robinson, Amy Annells, Christian Cando-Dumancela, Martin F Breed","doi":"10.1098/rsbl.2024.0295","DOIUrl":"10.1098/rsbl.2024.0295","url":null,"abstract":"<p><p>Ecosystem restoration interventions often utilize visible elements to restore an ecosystem (e.g. replanting native plant communities and reintroducing lost species). However, using acoustic stimulation to help restore ecosystems and promote plant growth has received little attention. Our study aimed to assess the effect of acoustic stimulation on the growth rate and sporulation of the plant growth-promoting fungus <i>Trichoderma harzianum</i> Rifai, 1969. We played a monotone acoustic stimulus (80 dB sound pressure level (SPL) at a peak frequency of 8 kHz and a bandwidth at -10 dB from the peak of 6819 Hz-parameters determined via review and pilot research) over 5 days to <i>T. harzianum</i> to assess whether acoustic stimulation affected the growth rate and sporulation of this fungus (control samples received only ambient sound stimulation less than 30 dB). We show that the acoustic stimulation treatments resulted in increased fungal biomass and enhanced <i>T. harzianum</i> conidia (spore) activity compared to controls. These results indicate that acoustic stimulation influences plant growth-promoting fungal growth and potentially facilitates their functioning (e.g. stimulating sporulation). The mechanism responsible for this phenomenon may be fungal mechanoreceptor stimulation and/or potentially a piezoelectric effect; however, further research is required to confirm this hypothesis. Our novel study highlights the potential of acoustic stimulation to alter important fungal attributes, which could, with further development, be harnessed to aid ecosystem restoration and sustainable agriculture.</p>","PeriodicalId":9005,"journal":{"name":"Biology Letters","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444772/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}