{"title":"Role of glucagon-like peptide-1 receptor agonists in Alzheimer's disease and Parkinson's disease.","authors":"Chien-Tai Hong, Jia-Hung Chen, Chaur-Jong Hu","doi":"10.1186/s12929-024-01090-x","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common complications of diabetes, arising from insulin resistance, inflammation, and other pathological processes in the central nervous system. The potential of numerous antidiabetic agents to modify neurodegenerative disease progression, both preclinically and clinically, has been assessed. These agents may provide additional therapeutic benefits beyond glycemic control. Introduced in the twenty-first century, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of antidiabetic drugs noted not only for their potent glucose-lowering effects but also for their cardiovascular and renal protective benefits. Various GLP-1RAs have been demonstrated to have significant benefits in in vitro and in vivo models of neurodegenerative diseases through modulating a variety of pathogenic mechanisms, including neuroinflammation, autophagy, mitochondrial dysfunction, and the abnormal phosphorylation of pathognomonic proteins. These agents also have substantial protective effects on cognitive and behavioral functions, such as motor function. However, clinical trials investigating GLP-1RAs in diseases such as AD, PD, mild cognitive impairment, psychiatric disorders, and diabetes have yielded mixed results for cognitive and motor function. This review examines the link between diabetes and neurodegenerative diseases, explores the effects of antidiabetic agents on neurodegeneration, provides a concise overview of the GLP-1 pathway, and discusses both preclinical and clinical trial outcomes of GLP-1RAs for neurodegenerative diseases, including their effects on cognition in AD and PD. This review also proposed new strategies for the design of future clinical trials on GLP-1 RAs for both AD and PD.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"102"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01090-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases, including Alzheimer's Disease (AD) and Parkinson's Disease (PD) are common complications of diabetes, arising from insulin resistance, inflammation, and other pathological processes in the central nervous system. The potential of numerous antidiabetic agents to modify neurodegenerative disease progression, both preclinically and clinically, has been assessed. These agents may provide additional therapeutic benefits beyond glycemic control. Introduced in the twenty-first century, glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of antidiabetic drugs noted not only for their potent glucose-lowering effects but also for their cardiovascular and renal protective benefits. Various GLP-1RAs have been demonstrated to have significant benefits in in vitro and in vivo models of neurodegenerative diseases through modulating a variety of pathogenic mechanisms, including neuroinflammation, autophagy, mitochondrial dysfunction, and the abnormal phosphorylation of pathognomonic proteins. These agents also have substantial protective effects on cognitive and behavioral functions, such as motor function. However, clinical trials investigating GLP-1RAs in diseases such as AD, PD, mild cognitive impairment, psychiatric disorders, and diabetes have yielded mixed results for cognitive and motor function. This review examines the link between diabetes and neurodegenerative diseases, explores the effects of antidiabetic agents on neurodegeneration, provides a concise overview of the GLP-1 pathway, and discusses both preclinical and clinical trial outcomes of GLP-1RAs for neurodegenerative diseases, including their effects on cognition in AD and PD. This review also proposed new strategies for the design of future clinical trials on GLP-1 RAs for both AD and PD.
期刊介绍:
The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.