Elham Hashemi, Mansoureh Movahedin, Ali Ghiaseddin, Seyed Mohammad Kazem Aghamir
{"title":"In Vitro Spermatogenesis on Human Decellularized Testicular Matrix Plates Following Exosome Treatment in a Dynamic Culture System.","authors":"Elham Hashemi, Mansoureh Movahedin, Ali Ghiaseddin, Seyed Mohammad Kazem Aghamir","doi":"10.1007/s12015-024-10818-z","DOIUrl":null,"url":null,"abstract":"<p><p>Testicular tissue engineering for in vitro spermatogenesis aims to restore fertility, focusing on challenges like efficiency, ethical concerns, and the need for a deeper biological understanding. The use of decellularized scaffolds led to better cell seeding and differentiation, and exosomes led to enhanced spermatogenesis. Also, the dynamic culture systems are being explored to replicate in vivo conditions more accurately. In this study, we aimed to utilize a perfusion mini-bioreactor for the dynamic culture of mouse spermatogonial stem cells on decellularized testicular matrix plates supplemented with exosomes. Our goal was to assess the progression of the spermatogenesis process through histological, immunohistochemical, and molecular analyses over four weeks. Human testicular tissues were decellularized using 1% sodium dodecyl sulfate and were then fabricated into thin plates using a cryostat. Sertoli and spermatogonial stem cells were isolated from neonate mouse testis and seeded onto the decellularized testicular matrix plates. A mini-perfusion bioreactor was employed to create dynamic culture conditions. Also, MSCs-derived exosomes were introduced to the culture medium, alone or in combination with a spermatogenic medium containing numerous chemical factors. The histological, IHC, and molecular analyses were performed at the end of the experiment. Our decellularization procedure successfully preserved the ECM components, while eliminating native cells. The isolated cells expressed PLZF and VIMENTIN markers, confirming the presence of SSCs and Sertoli cells. The seeded scaffolds exhibited proper homing, viability, proliferation, and differentiation of the cells towards in vitro spermatogenesis. Also, exosome treatment is capable of enhancing the spermatogenic potential of SSCs. Our findings indicate that the dynamic culture system significantly promoted the proliferation and differentiation of SSCs into mature spermatozoa. The use of exosomes further enhanced these effects, as evidenced by improved cellular viability, reduced apoptosis, and advanced spermatogenesis to the elongated spermatid stage. The combined treatment of exosomes and spermatogenic medium showed a synergistic effect, yielding superior outcomes in terms of sperm cell maturity and functionality. This study underscores the potential of combining decellularized testicular matrices with exosome therapy in a dynamic culture set up to advance the field of reproductive biology and fertility restoration.</p>","PeriodicalId":21955,"journal":{"name":"Stem Cell Reviews and Reports","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reviews and Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12015-024-10818-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Testicular tissue engineering for in vitro spermatogenesis aims to restore fertility, focusing on challenges like efficiency, ethical concerns, and the need for a deeper biological understanding. The use of decellularized scaffolds led to better cell seeding and differentiation, and exosomes led to enhanced spermatogenesis. Also, the dynamic culture systems are being explored to replicate in vivo conditions more accurately. In this study, we aimed to utilize a perfusion mini-bioreactor for the dynamic culture of mouse spermatogonial stem cells on decellularized testicular matrix plates supplemented with exosomes. Our goal was to assess the progression of the spermatogenesis process through histological, immunohistochemical, and molecular analyses over four weeks. Human testicular tissues were decellularized using 1% sodium dodecyl sulfate and were then fabricated into thin plates using a cryostat. Sertoli and spermatogonial stem cells were isolated from neonate mouse testis and seeded onto the decellularized testicular matrix plates. A mini-perfusion bioreactor was employed to create dynamic culture conditions. Also, MSCs-derived exosomes were introduced to the culture medium, alone or in combination with a spermatogenic medium containing numerous chemical factors. The histological, IHC, and molecular analyses were performed at the end of the experiment. Our decellularization procedure successfully preserved the ECM components, while eliminating native cells. The isolated cells expressed PLZF and VIMENTIN markers, confirming the presence of SSCs and Sertoli cells. The seeded scaffolds exhibited proper homing, viability, proliferation, and differentiation of the cells towards in vitro spermatogenesis. Also, exosome treatment is capable of enhancing the spermatogenic potential of SSCs. Our findings indicate that the dynamic culture system significantly promoted the proliferation and differentiation of SSCs into mature spermatozoa. The use of exosomes further enhanced these effects, as evidenced by improved cellular viability, reduced apoptosis, and advanced spermatogenesis to the elongated spermatid stage. The combined treatment of exosomes and spermatogenic medium showed a synergistic effect, yielding superior outcomes in terms of sperm cell maturity and functionality. This study underscores the potential of combining decellularized testicular matrices with exosome therapy in a dynamic culture set up to advance the field of reproductive biology and fertility restoration.
期刊介绍:
The purpose of Stem Cell Reviews and Reports is to cover contemporary and emerging areas in stem cell research and regenerative medicine. The journal will consider for publication:
i) solicited or unsolicited reviews of topical areas of stem cell biology that highlight, critique and synthesize recent important findings in the field.
ii) full length and short reports presenting original experimental work.
iii) translational stem cell studies describing results of clinical trials using stem cells as therapeutics.
iv) papers focused on diseases of stem cells.
v) hypothesis and commentary articles as opinion-based pieces in which authors can propose a new theory, interpretation of a controversial area in stem cell biology, or a stem cell biology question or paradigm. These articles contain more speculation than reviews, but they should be based on solid rationale.
vi) protocols as peer-reviewed procedures that provide step-by-step descriptions, outlined in sufficient detail, so that both experts and novices can apply them to their own research.
vii) letters to the editor and correspondence.
In order to facilitate this exchange of scientific information and exciting novel ideas, the journal has created five thematic sections, focusing on:
i) the role of adult stem cells in tissue regeneration;
ii) progress in research on induced pluripotent stem cells, embryonic stem cells and mechanism governing embryogenesis and tissue development;
iii) the role of microenvironment and extracellular microvesicles in directing the fate of stem cells;
iv) mechanisms of stem cell trafficking, stem cell mobilization and homing with special emphasis on hematopoiesis;
v) the role of stem cells in aging processes and cancerogenesis.