Generative AI in higher education: Seeing ChatGPT through universities' policies, resources, and guidelines

Hui Wang , Anh Dang , Zihao Wu , Son Mac
{"title":"Generative AI in higher education: Seeing ChatGPT through universities' policies, resources, and guidelines","authors":"Hui Wang ,&nbsp;Anh Dang ,&nbsp;Zihao Wu ,&nbsp;Son Mac","doi":"10.1016/j.caeai.2024.100326","DOIUrl":null,"url":null,"abstract":"<div><div>The advancements in Generative Artificial Intelligence (GenAI) can provide opportunities for enriching educational experiences, but at the same time raise concerns regarding academic integrity. Many educators have expressed anxiety and hesitation when it comes to integrating GenAI in their teaching practices. Thus, recommendations and guidance from institutions are needed to support instructors in this new and emerging GenAI era. In response to this need, this study explores different U.S. universities' academic policies and guidelines regarding the use of GenAI tools (e.g., ChatGPT) for teaching and learning, and from there, gains understanding of how these universities respond and adapt to the development of GenAI in their academic contexts. Data sources include academic policies, statements, guidelines, and relevant resources provided by the top 100 universities in the U.S. Results show that the majority of these universities adopt an open but cautious approach towards GenAI. Primary concerns lie in ethical usage, accuracy, and data privacy. Most universities actively respond and provide diverse types of resources, such as syllabus templates, workshops, shared articles, and one-on-one consultations; focusing on a range of topics, namely general technical introduction, ethical concerns, pedagogical applications, preventive strategies, data privacy, limitations, and detective tools. The findings provide four practical pedagogical implications for educators when considering GenAI in teaching practices: 1) accepting GenAI presence, 2) aligning GenAI use with learning objectives, 3) evolving curriculum to prevent misuse of GenAI, and 4) adopting multifaceted evaluation strategies. For recommendations toward policy making, the article suggests two possible directions for the use of GenAI tools: 1) establishing discipline-specific policies and guidelines, and 2) managing students' sensitive information in a transparent and careful manner.</div></div>","PeriodicalId":34469,"journal":{"name":"Computers and Education Artificial Intelligence","volume":"7 ","pages":"Article 100326"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Education Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666920X24001292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The advancements in Generative Artificial Intelligence (GenAI) can provide opportunities for enriching educational experiences, but at the same time raise concerns regarding academic integrity. Many educators have expressed anxiety and hesitation when it comes to integrating GenAI in their teaching practices. Thus, recommendations and guidance from institutions are needed to support instructors in this new and emerging GenAI era. In response to this need, this study explores different U.S. universities' academic policies and guidelines regarding the use of GenAI tools (e.g., ChatGPT) for teaching and learning, and from there, gains understanding of how these universities respond and adapt to the development of GenAI in their academic contexts. Data sources include academic policies, statements, guidelines, and relevant resources provided by the top 100 universities in the U.S. Results show that the majority of these universities adopt an open but cautious approach towards GenAI. Primary concerns lie in ethical usage, accuracy, and data privacy. Most universities actively respond and provide diverse types of resources, such as syllabus templates, workshops, shared articles, and one-on-one consultations; focusing on a range of topics, namely general technical introduction, ethical concerns, pedagogical applications, preventive strategies, data privacy, limitations, and detective tools. The findings provide four practical pedagogical implications for educators when considering GenAI in teaching practices: 1) accepting GenAI presence, 2) aligning GenAI use with learning objectives, 3) evolving curriculum to prevent misuse of GenAI, and 4) adopting multifaceted evaluation strategies. For recommendations toward policy making, the article suggests two possible directions for the use of GenAI tools: 1) establishing discipline-specific policies and guidelines, and 2) managing students' sensitive information in a transparent and careful manner.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高等教育中的生成式人工智能:从大学的政策、资源和指导方针看 ChatGPT
生成式人工智能(GenAI)的进步可以为丰富教育体验提供机会,但同时也引发了对学术诚信的担忧。在将 GenAI 融入教学实践时,许多教育工作者表示焦虑和犹豫。因此,在这个新兴的GenAI时代,需要来自机构的建议和指导来支持教师。为了满足这一需求,本研究探讨了美国不同大学关于在教学中使用 GenAI 工具(如 ChatGPT)的学术政策和指导方针,并从中了解这些大学如何在其学术环境中应对和适应 GenAI 的发展。数据来源包括美国前 100 所大学提供的学术政策、声明、指南和相关资源。结果显示,这些大学中的大多数对 GenAI 采取开放但谨慎的态度。主要关注点在于道德使用、准确性和数据隐私。大多数大学积极响应并提供各种类型的资源,如教学大纲模板、研讨会、共享文章和一对一咨询;重点关注一系列主题,即一般技术介绍、伦理问题、教学应用、预防策略、数据隐私、局限性和检测工具。研究结果为教育工作者在教学实践中考虑 GenAI 时提供了四个实用的教学启示:1)接受 GenAI 的存在;2)使 GenAI 的使用与学习目标相一致;3)发展课程以防止 GenAI 的滥用;以及 4)采用多方面的评估策略。对于政策制定方面的建议,文章提出了使用GenAI工具的两个可能方向:1)制定针对具体学科的政策和指导方针;2)以透明和谨慎的方式管理学生的敏感信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.80
自引率
0.00%
发文量
66
审稿时长
50 days
期刊最新文献
Enhancing data analysis and programming skills through structured prompt training: The impact of generative AI in engineering education Understanding the practices, perceptions, and (dis)trust of generative AI among instructors: A mixed-methods study in the U.S. higher education Technological self-efficacy and sense of coherence: Key drivers in teachers' AI acceptance and adoption The influence of AI literacy on complex problem-solving skills through systematic thinking skills and intuition thinking skills: An empirical study in Thai gen Z accounting students Psychometrics of an Elo-based large-scale online learning system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1