Control design and analysis for autonomous underwater vehicles using integral quadratic constraints

IF 5.4 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Control Engineering Practice Pub Date : 2024-11-05 DOI:10.1016/j.conengprac.2024.106142
{"title":"Control design and analysis for autonomous underwater vehicles using integral quadratic constraints","authors":"","doi":"10.1016/j.conengprac.2024.106142","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the design and analysis of path-following controllers for an autonomous underwater vehicle (AUV) using a robustness analysis framework based on integral quadratic constraints (IQCs). The AUV is modeled as a linear fractional transformation (LFT) on uncertainties and is affected by exogenous inputs such as measurement noise and ocean currents. The proposed approach leverages a learning-based method to approximate the nonlinear hydrodynamic model with a linear parameter-varying one. Additionally, modeling uncertainties are incorporated into the other subsystem models of the AUV to capture the discrepancies between the outputs of the postulated mathematical abstractions and the experimental data. The resulting uncertain LFT system adequately captures the AUV behavior within a desired envelope. Ocean current disturbances are treated as uncertainties within the LFT system and properly characterized to reduce conservatism. The robust performance level, obtained from IQC analysis, serves as a qualitative measure of a controller’s performance, and is utilized in guiding the controller design process. The proposed approach is employed to design <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> controllers for the AUV. A comprehensive IQC-based analysis is subsequently conducted to demonstrate the robustness of the designed controllers to modeling uncertainties and disturbances. To validate the analysis results, extensive nonlinear simulations and underwater experiments are performed. The outcomes showcase the efficacy and reliability of the proposed approach in achieving robust control for the AUV.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124003010","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the design and analysis of path-following controllers for an autonomous underwater vehicle (AUV) using a robustness analysis framework based on integral quadratic constraints (IQCs). The AUV is modeled as a linear fractional transformation (LFT) on uncertainties and is affected by exogenous inputs such as measurement noise and ocean currents. The proposed approach leverages a learning-based method to approximate the nonlinear hydrodynamic model with a linear parameter-varying one. Additionally, modeling uncertainties are incorporated into the other subsystem models of the AUV to capture the discrepancies between the outputs of the postulated mathematical abstractions and the experimental data. The resulting uncertain LFT system adequately captures the AUV behavior within a desired envelope. Ocean current disturbances are treated as uncertainties within the LFT system and properly characterized to reduce conservatism. The robust performance level, obtained from IQC analysis, serves as a qualitative measure of a controller’s performance, and is utilized in guiding the controller design process. The proposed approach is employed to design H and H2 controllers for the AUV. A comprehensive IQC-based analysis is subsequently conducted to demonstrate the robustness of the designed controllers to modeling uncertainties and disturbances. To validate the analysis results, extensive nonlinear simulations and underwater experiments are performed. The outcomes showcase the efficacy and reliability of the proposed approach in achieving robust control for the AUV.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用积分二次约束的自主式水下航行器控制设计与分析
本文采用基于积分二次约束(IQC)的鲁棒性分析框架,对自主潜水器(AUV)的路径跟踪控制器进行了设计和分析。AUV 被建模为不确定性线性分数变换 (LFT),并受到测量噪声和洋流等外生输入的影响。所提出的方法利用基于学习的方法,用线性参数变化模型来近似非线性流体动力学模型。此外,在 AUV 的其他子系统模型中加入了建模不确定性,以捕捉假设的数学抽象输出与实验数据之间的差异。由此产生的不确定 LFT 系统可在所需范围内充分捕捉 AUV 的行为。洋流干扰被视为 LFT 系统中的不确定因素,并被适当描述以减少保守性。通过 IQC 分析获得的鲁棒性能水平可作为控制器性能的定性衡量标准,并用于指导控制器的设计过程。所提出的方法被用于为 AUV 设计 H∞ 和 H2 控制器。随后进行了基于 IQC 的综合分析,以证明所设计的控制器对模型不确定性和干扰的鲁棒性。为了验证分析结果,进行了大量的非线性模拟和水下实验。结果表明了所提出的方法在实现 AUV 鲁棒控制方面的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Control Engineering Practice
Control Engineering Practice 工程技术-工程:电子与电气
CiteScore
9.20
自引率
12.20%
发文量
183
审稿时长
44 days
期刊介绍: Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper. The scope of Control Engineering Practice matches the activities of IFAC. Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.
期刊最新文献
Randomized iterative feedback tuning for fast MIMO feedback design of a mechatronic system Lane-free signal-free intersection crossing via model predictive control Control design and analysis for autonomous underwater vehicles using integral quadratic constraints Time-optimal multi-point trajectory generation for robotic manipulators with continuous jerk and constant average acceleration Study of control strategy for cylinder-to-cylinder combustion homogeneity of marine medium-speed diesel engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1