{"title":"Research on accelerated thermal fatigue testing and life prediction of Al-Si alloy pistons under start-stop cycles","authors":"","doi":"10.1016/j.ijfatigue.2024.108677","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the most critical components in the combustion chamber of diesel engines, pistons operate under high temperature and pressure conditions for extended periods, which increases the likelihood of failures such as thermal fatigue. This paper first utilizes finite element simulation to obtain the temperature and stress field distribution of an Al-Si alloy piston under actual engine conditions. The results indicate that the throat area of the piston is the most susceptible to fatigue failure. Based on this, accelerated thermal fatigue tests were conducted to study the influence of various experimental factors on piston life, as well as to analyze the weight of each factor. Results from macroscopic and microscopic analyses of cracks using a scanning electron microscope show that fatigue cracks originate at the interface between the aluminum matrix and the detached hard particles. The cracking at the piston throat exhibits clear characteristics of ductile fracture, which is the result of cumulative fatigue damage. Therefore, from the perspective of continuum damage mechanics, it is considered to characterize the equivalent stress using the average loading rate during the loading phase and the maximum axial temperature gradient, establishing an experimental life prediction model for Al-Si alloy pistons.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014211232400536X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As one of the most critical components in the combustion chamber of diesel engines, pistons operate under high temperature and pressure conditions for extended periods, which increases the likelihood of failures such as thermal fatigue. This paper first utilizes finite element simulation to obtain the temperature and stress field distribution of an Al-Si alloy piston under actual engine conditions. The results indicate that the throat area of the piston is the most susceptible to fatigue failure. Based on this, accelerated thermal fatigue tests were conducted to study the influence of various experimental factors on piston life, as well as to analyze the weight of each factor. Results from macroscopic and microscopic analyses of cracks using a scanning electron microscope show that fatigue cracks originate at the interface between the aluminum matrix and the detached hard particles. The cracking at the piston throat exhibits clear characteristics of ductile fracture, which is the result of cumulative fatigue damage. Therefore, from the perspective of continuum damage mechanics, it is considered to characterize the equivalent stress using the average loading rate during the loading phase and the maximum axial temperature gradient, establishing an experimental life prediction model for Al-Si alloy pistons.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.