Tahsin Alam , Md. Rokonuzzaman , Sohag Sarker , A F M Zainul Abadin , Tarun Debnath , Md. Imran Hossain
{"title":"Internet of Things-based Home Automation with Network Mapper and MQTT Protocol","authors":"Tahsin Alam , Md. Rokonuzzaman , Sohag Sarker , A F M Zainul Abadin , Tarun Debnath , Md. Imran Hossain","doi":"10.1016/j.compeleceng.2024.109807","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing ability of internet-connected daily life electronic gadgets has propelled smart homes into a global trend. The Internet of Things (IoT) enables ambient devices to communicate and interact seamlessly through various sensors. Emerging technical concepts like Web3 and Industry 5.0 require decentralised and intelligent systems near the network's edge. Petabytes of IoT sensor-generated data cause a shortage of storage on the Cloud servers, adding a delay factor to the IoT system. Standard cloud-based IoT systems can't fully function in areas with unstable internet. This paper addresses these challenges and proposes a solution to integrate edge computing concepts. The proposed system is developed using a Raspberry Pi 3 Home Server (RHS) driven by the Support Vector Machine (SVM) algorithm. The designed prototype includes a fire and smoke detection system with MQ2 gas, dust, temperature, and flame sensors. The SVM and these sensors form a data fusion module integrating with Network Mapper (NMAP), Message Queuing Telemetry Transport (MQTT) broker, MariaDB SQL server, and InfluxDB time series database. The experiments demonstrate a fundamental edge operation with a latency of 2.45 ms (milliseconds), while NMAP integration ensures data security and device verification for sensor data storage. The synthetic simulations show positive outcomes for the data fusion-based monitoring system, where alerts are promptly triggered as sensor values change, with an overall system latency of approximately 24 ms. The developed system manages home automation, real-time monitoring for fire, smoke, gas leaks, network scans, anomaly detection, appliance usage tracking, and cloud data backup. A multi-level alert system ensures early threat mitigation, with alarms, SMS, notifications, and email alerts to maximize awareness.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"120 ","pages":"Article 109807"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790624007341","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing ability of internet-connected daily life electronic gadgets has propelled smart homes into a global trend. The Internet of Things (IoT) enables ambient devices to communicate and interact seamlessly through various sensors. Emerging technical concepts like Web3 and Industry 5.0 require decentralised and intelligent systems near the network's edge. Petabytes of IoT sensor-generated data cause a shortage of storage on the Cloud servers, adding a delay factor to the IoT system. Standard cloud-based IoT systems can't fully function in areas with unstable internet. This paper addresses these challenges and proposes a solution to integrate edge computing concepts. The proposed system is developed using a Raspberry Pi 3 Home Server (RHS) driven by the Support Vector Machine (SVM) algorithm. The designed prototype includes a fire and smoke detection system with MQ2 gas, dust, temperature, and flame sensors. The SVM and these sensors form a data fusion module integrating with Network Mapper (NMAP), Message Queuing Telemetry Transport (MQTT) broker, MariaDB SQL server, and InfluxDB time series database. The experiments demonstrate a fundamental edge operation with a latency of 2.45 ms (milliseconds), while NMAP integration ensures data security and device verification for sensor data storage. The synthetic simulations show positive outcomes for the data fusion-based monitoring system, where alerts are promptly triggered as sensor values change, with an overall system latency of approximately 24 ms. The developed system manages home automation, real-time monitoring for fire, smoke, gas leaks, network scans, anomaly detection, appliance usage tracking, and cloud data backup. A multi-level alert system ensures early threat mitigation, with alarms, SMS, notifications, and email alerts to maximize awareness.
期刊介绍:
The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency.
Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.