Electrodeposition on laser induced graphene dual conductive substrate as a free-standing electrode for asymmetric supercapacitors

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-05 DOI:10.1016/j.est.2024.114473
Xiaofeng Liu, Zhijiao Chen, Haiyan Sun, Lei Ge, Xinzhi Sun
{"title":"Electrodeposition on laser induced graphene dual conductive substrate as a free-standing electrode for asymmetric supercapacitors","authors":"Xiaofeng Liu,&nbsp;Zhijiao Chen,&nbsp;Haiyan Sun,&nbsp;Lei Ge,&nbsp;Xinzhi Sun","doi":"10.1016/j.est.2024.114473","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, combing laser-induced graphene (LIG) obtained by laser scribing on polyethersulfone (PES) films with carbon cloth (CC) forming novel dual conductive networks can cause the well-designed electrode materials possessing strong electric conductivity in favor of electron transferring. The free-standing NiCo/L-CC@PES-IG or Fe/L-CC@PES-IG have been prepared through laser scribing and electrodeposition processes at mild conditions. Fe/L-CC@PES-IG exhibits a high areal specific capacitance of 1544 mF cm<sup>−2</sup> at a current density of 1 mA cm<sup>−2</sup>, which matches well with NiCo/L-CC@PES-IG (1840 mF cm<sup>−2</sup>). It is worth mentioning that the capacitance retention of NiCo/L-CC@PES-IG can reach 80 % at 10 mA cm<sup>−2</sup>, ca. 16 times that of NiCo/L-CC-IG (only 5 %) just adding small amount PES, which indicate that the dual conductive network synergistic effect of the external conductive graphene and the internal CC. The asymmetric supercapacitor (ASC) device is constructed using NiCo/L-CC@PES-IG as a positive electrode and Fe/L-CC@PES-IG as a negative electrode, which delivers a high areal energy density of 381 μWh cm<sup>−2</sup> at the areal power density of 825.8 μW cm<sup>−2</sup>. This work provides a unique insight into the design of hybrid supercapacitor assembled with matching positive and negative electrodes, which will achieve the desired superhigh performance.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24040593","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, combing laser-induced graphene (LIG) obtained by laser scribing on polyethersulfone (PES) films with carbon cloth (CC) forming novel dual conductive networks can cause the well-designed electrode materials possessing strong electric conductivity in favor of electron transferring. The free-standing NiCo/L-CC@PES-IG or Fe/L-CC@PES-IG have been prepared through laser scribing and electrodeposition processes at mild conditions. Fe/L-CC@PES-IG exhibits a high areal specific capacitance of 1544 mF cm−2 at a current density of 1 mA cm−2, which matches well with NiCo/L-CC@PES-IG (1840 mF cm−2). It is worth mentioning that the capacitance retention of NiCo/L-CC@PES-IG can reach 80 % at 10 mA cm−2, ca. 16 times that of NiCo/L-CC-IG (only 5 %) just adding small amount PES, which indicate that the dual conductive network synergistic effect of the external conductive graphene and the internal CC. The asymmetric supercapacitor (ASC) device is constructed using NiCo/L-CC@PES-IG as a positive electrode and Fe/L-CC@PES-IG as a negative electrode, which delivers a high areal energy density of 381 μWh cm−2 at the areal power density of 825.8 μW cm−2. This work provides a unique insight into the design of hybrid supercapacitor assembled with matching positive and negative electrodes, which will achieve the desired superhigh performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光诱导石墨烯双导电基底上的电沉积作为不对称超级电容器的独立电极
在此,将激光在聚醚砜(PES)薄膜上划线得到的激光诱导石墨烯(LIG)与碳布(CC)结合形成新型双导电网络,可以设计出具有强导电性且有利于电子传输的电极材料。在温和的条件下,通过激光划线和电沉积工艺制备了独立的 NiCo/L-CC@PES-IG 或 Fe/L-CC@PES-IG。在电流密度为 1 mA cm-2 时,Fe/L-CC@PES-IG 表现出 1544 mF cm-2 的高面积比电容,与 NiCo/L-CC@PES-IG (1840 mF cm-2)不相上下。值得一提的是,在 10 mA cm-2 的电流密度下,NiCo/L-CC@PES-IG 的电容保持率可达 80%,约为仅添加少量 PES 的 NiCo/L-CC-IG (仅 5%)的 16 倍,这表明外部导电石墨烯和内部 CC 的双导电网络具有协同效应。以 NiCo/L-CC@PES-IG 为正极、Fe/L-CC@PES-IG 为负极构建的非对称超级电容器(ASC)器件,在 825.8 μW cm-2 的单位功率密度下可提供 381 μWh cm-2 的高单位能量密度。这项研究为设计正负电极匹配的混合超级电容器提供了独特的见解,从而实现了所需的超高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Green synthesis of SiOx/C-TiO2 with continuous conductive network towards enhancing lithium storage performance Neutral-state black electrochromic polymer with enhanced supercapacitor electrode performance An improved barrier function double integral sliding mode control of SynRM for hybrid energy storage system-based electric vehicle Analysis and prediction of battery temperature in thermal management system coupled SiC foam-composite phase change material and air Role of pumped hydro storage plants for flood control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1