{"title":"A unified consensus-based parallel algorithm for high-dimensional regression with combined regularizations","authors":"Xiaofei Wu , Rongmei Liang , Zhimin Zhang , Zhenyu Cui","doi":"10.1016/j.csda.2024.108081","DOIUrl":null,"url":null,"abstract":"<div><div>The parallel algorithm is widely recognized for its effectiveness in handling large-scale datasets stored in a distributed manner, making it a popular choice for solving statistical learning models. However, there is currently limited research on parallel algorithms specifically designed for high-dimensional regression with combined regularization terms. These terms, such as elastic-net, sparse group lasso, sparse fused lasso, and their nonconvex variants, have gained significant attention in various fields due to their ability to incorporate prior information and promote sparsity within specific groups or fused variables. The scarcity of parallel algorithms for combined regularizations can be attributed to the inherent nonsmoothness and complexity of these terms, as well as the absence of closed-form solutions for certain proximal operators associated with them. This paper proposes a <em>unified</em> constrained optimization formulation based on the consensus problem for these types of convex and nonconvex regression problems, and derives the corresponding parallel alternating direction method of multipliers (ADMM) algorithms. Furthermore, it is proven that the proposed algorithm not only has global convergence but also exhibits a linear convergence rate. It is worth noting that the computational complexity of the proposed algorithm remains the same for different regularization terms and losses, which implicitly demonstrates the universality of this algorithm. Extensive simulation experiments, along with a financial example, serve to demonstrate the reliability, stability, and scalability of our algorithm. The R package for implementing the proposed algorithm can be obtained at <span><span>https://github.com/xfwu1016/CPADMM</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001658","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The parallel algorithm is widely recognized for its effectiveness in handling large-scale datasets stored in a distributed manner, making it a popular choice for solving statistical learning models. However, there is currently limited research on parallel algorithms specifically designed for high-dimensional regression with combined regularization terms. These terms, such as elastic-net, sparse group lasso, sparse fused lasso, and their nonconvex variants, have gained significant attention in various fields due to their ability to incorporate prior information and promote sparsity within specific groups or fused variables. The scarcity of parallel algorithms for combined regularizations can be attributed to the inherent nonsmoothness and complexity of these terms, as well as the absence of closed-form solutions for certain proximal operators associated with them. This paper proposes a unified constrained optimization formulation based on the consensus problem for these types of convex and nonconvex regression problems, and derives the corresponding parallel alternating direction method of multipliers (ADMM) algorithms. Furthermore, it is proven that the proposed algorithm not only has global convergence but also exhibits a linear convergence rate. It is worth noting that the computational complexity of the proposed algorithm remains the same for different regularization terms and losses, which implicitly demonstrates the universality of this algorithm. Extensive simulation experiments, along with a financial example, serve to demonstrate the reliability, stability, and scalability of our algorithm. The R package for implementing the proposed algorithm can be obtained at https://github.com/xfwu1016/CPADMM.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.