Thermo-electric coupling dynamic modeling and response behavior analysis of PEMEC based on heat current method

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2024-11-05 DOI:10.1016/j.ijheatmasstransfer.2024.126395
Yunxi Yang, Junhong Hao, Jinglong Zhou, Xingce Wang, Yanqiang Kong, Xiaoze Du
{"title":"Thermo-electric coupling dynamic modeling and response behavior analysis of PEMEC based on heat current method","authors":"Yunxi Yang,&nbsp;Junhong Hao,&nbsp;Jinglong Zhou,&nbsp;Xingce Wang,&nbsp;Yanqiang Kong,&nbsp;Xiaoze Du","doi":"10.1016/j.ijheatmasstransfer.2024.126395","DOIUrl":null,"url":null,"abstract":"<div><div>Complete analysis of the dynamic characteristics of the proton exchange membrane electrolytic cell (PEMEC) is significant for its efficient and flexible utilization. To fully reflect the dynamic process including thermo-electric interactions within PEMEC, this paper disassembles this process and simplifies it for representation through a clear diagram of dynamic power flow. On this basis, we proposed a novel combined qualitative and quantitative analytical method for the comprehensive response by defining the evaluating indexes for PEMEC's response performance. Meanwhile, we analyzed the change pattern of dynamic response behavior, response time and the influence of thermo-electric interaction under multi-scenarios, like different voltage abrupt change magnitudes, different cathode operating pressures, and different inlet water temperatures. The results show that the PEMEC has the biggest response behavior with the longest response time under the largest external voltage variation magnitude. Besides, there is the shortest response time and smallest parameters total changes after response when the cathode operating pressure is 15bar Moreover, when the inlet water temperature is 40 °C it has the characteristic of quick action time and small response magnitude. The model, analysis method, and findings in this paper provide an effective reference for the operational regulation of PEMEC's thermal and electrical parameters.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"236 ","pages":"Article 126395"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012249","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Complete analysis of the dynamic characteristics of the proton exchange membrane electrolytic cell (PEMEC) is significant for its efficient and flexible utilization. To fully reflect the dynamic process including thermo-electric interactions within PEMEC, this paper disassembles this process and simplifies it for representation through a clear diagram of dynamic power flow. On this basis, we proposed a novel combined qualitative and quantitative analytical method for the comprehensive response by defining the evaluating indexes for PEMEC's response performance. Meanwhile, we analyzed the change pattern of dynamic response behavior, response time and the influence of thermo-electric interaction under multi-scenarios, like different voltage abrupt change magnitudes, different cathode operating pressures, and different inlet water temperatures. The results show that the PEMEC has the biggest response behavior with the longest response time under the largest external voltage variation magnitude. Besides, there is the shortest response time and smallest parameters total changes after response when the cathode operating pressure is 15bar Moreover, when the inlet water temperature is 40 °C it has the characteristic of quick action time and small response magnitude. The model, analysis method, and findings in this paper provide an effective reference for the operational regulation of PEMEC's thermal and electrical parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热电流法的 PEMEC 热电耦合动态建模和响应特性分析
对质子交换膜电解池(PEMEC)的动态特性进行全面分析,对于高效灵活地利用质子交换膜电解池具有重要意义。为了全面反映质子交换膜电解池内部包括热电相互作用在内的动态过程,本文对这一过程进行了分解,并通过清晰的动态功率流图将其简化表示。在此基础上,我们通过定义 PEMEC 响应性能的评价指标,提出了一种新颖的定性与定量相结合的综合响应分析方法。同时,我们分析了不同电压突变幅度、不同阴极工作压力和不同进水温度等多情景下动态响应行为的变化规律、响应时间以及热电相互作用的影响。结果表明,在外部电压变化幅度最大的情况下,PEMEC 的响应行为最大,响应时间最长。此外,当阴极工作压力为 15bar 时,响应时间最短,响应后的参数总变化最小。本文的模型、分析方法和结论为 PEMEC 的热参数和电参数的运行调节提供了有效的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Particle sedimentation in cored-wire-arc directed energy deposition: Particle migration and suppression mechanism via ultrasonic vibration The effects of rolling and heaving on flow boiling heat transfer in a 3 × 3 rod bundle channel in a natural circulation system Reynolds-averaged Navier-Stokes simulations of opposing flow turbulent mixed convection heat transfer in a vertical tube Gas slip flow and heat transfer over a semi-confined cylinder in proximity to a solid wall Ingress wave model with purge-mainstream density ratio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1