{"title":"Machine learning approaches to soil-structure interaction under seismic loading: predictive modeling and analysis","authors":"Ahmad Alkhdour, Tamer shraa","doi":"10.1007/s42107-024-01146-1","DOIUrl":null,"url":null,"abstract":"<div><p>Soil-structure interaction (SSI) under seismic loading is a rather complex phenomenon that has immense effects on the seismic performance of structures. Traditional approaches are the finite element method (FEM) and the boundary element method (BEM), which have been used rather widely in analyzing SSI. Both methods usually fail to capture the complex dynamics of the underlying process. Recent advances in machine learning offer promising alternatives for predictive modeling and analysis of SSI. This paper deals with the applicability of the XGBoost machine learning model, optimized with particle swarm optimization (PSO) in predicting Soil-Structure Interaction under Seismic Loading. The presented model shows accuracy with mean squared error (MSE): 0.04, Root Mean Squared Error (RMSE): 0.2, R-squared (R<sup>2</sup>): 0.95, and mean absolute error (MAE): 0.1. The results show the better performance of the model over traditional methods like the finite element method (FEM) and the boundary element method (BEM). Comparisons through visualization show that there were close agreements in the displacements predicted and real displacements. Stress distributions and stress–strain curves, predicted from the analysis, validate the model's accuracy. The important outcomes are that the model can deliver more accurate and reliable predictions, enhancing seismic design, and safety to a great extent. It contributes to the literature by being the first application of machine learning combined with an optimization technique; it provides a full comparison to traditional methods for the community and shows future research opportunities, for example, including real-time seismic data or exploring model transferability.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8513,"journal":{"name":"Asian Journal of Civil Engineering","volume":"25 8","pages":"5781 - 5792"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s42107-024-01146-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Soil-structure interaction (SSI) under seismic loading is a rather complex phenomenon that has immense effects on the seismic performance of structures. Traditional approaches are the finite element method (FEM) and the boundary element method (BEM), which have been used rather widely in analyzing SSI. Both methods usually fail to capture the complex dynamics of the underlying process. Recent advances in machine learning offer promising alternatives for predictive modeling and analysis of SSI. This paper deals with the applicability of the XGBoost machine learning model, optimized with particle swarm optimization (PSO) in predicting Soil-Structure Interaction under Seismic Loading. The presented model shows accuracy with mean squared error (MSE): 0.04, Root Mean Squared Error (RMSE): 0.2, R-squared (R2): 0.95, and mean absolute error (MAE): 0.1. The results show the better performance of the model over traditional methods like the finite element method (FEM) and the boundary element method (BEM). Comparisons through visualization show that there were close agreements in the displacements predicted and real displacements. Stress distributions and stress–strain curves, predicted from the analysis, validate the model's accuracy. The important outcomes are that the model can deliver more accurate and reliable predictions, enhancing seismic design, and safety to a great extent. It contributes to the literature by being the first application of machine learning combined with an optimization technique; it provides a full comparison to traditional methods for the community and shows future research opportunities, for example, including real-time seismic data or exploring model transferability.
期刊介绍:
The Asian Journal of Civil Engineering (Building and Housing) welcomes articles and research contributions on topics such as:- Structural analysis and design - Earthquake and structural engineering - New building materials and concrete technology - Sustainable building and energy conservation - Housing and planning - Construction management - Optimal design of structuresPlease note that the journal will not accept papers in the area of hydraulic or geotechnical engineering, traffic/transportation or road making engineering, and on materials relevant to non-structural buildings, e.g. materials for road making and asphalt. Although the journal will publish authoritative papers on theoretical and experimental research works and advanced applications, it may also feature, when appropriate: a) tutorial survey type papers reviewing some fields of civil engineering; b) short communications and research notes; c) book reviews and conference announcements.